Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality
Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2017-11, Vol.27 (16), p.3028-3042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3042 |
---|---|
container_issue | 16 |
container_start_page | 3028 |
container_title | International journal of robust and nonlinear control |
container_volume | 27 |
creator | Dey, Rajeeb Martinez Garcia, Juan Carlos |
description | Summary
This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rnc.3723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1951012110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951012110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLpO2WcrgZWBQEMVlSNsTydBJxyRVihsfwWf0SUwdt67-czgfH5wfoVNKZpQQduFdPeMF43toQomUGWVc7o_zXGalZPwQHYWwJiTd2HyCPpabre_eoMENtHr4_vzy2r1Ayga24BpwEYeoK9vaOGDtdDsEG7DpPO5dDT5q67CHqH2THGEIETYBVzqkrXNYG2Md4Gfro01an7xpf-31qDtGB0a3AU7-coqerq8eF7fZ6v5mubhcZTXnhGcgyjI3dZPrpjAyF1SUgsscQBSCzhkRZcGZrAWjheSSGlNVAKSom0JwkZeET9HZzps-fe0hRLXuep9eCYpKQQlllI7U-Y6qfReCB6O23m60HxQlaqxWpWrVWG1Csx36blsY_uXUw93il_8BLJN-9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951012110</pqid></control><display><type>article</type><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</creator><creatorcontrib>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</creatorcontrib><description>Summary
This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3723</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Delay ; nonlinear perturbation ; norm‐bounded uncertainty ; robust stability ; Stability analysis ; uncertain time‐delay system ; Uncertainty analysis</subject><ispartof>International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3028-3042</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</citedby><cites>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Dey, Rajeeb</creatorcontrib><creatorcontrib>Martinez Garcia, Juan Carlos</creatorcontrib><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><title>International journal of robust and nonlinear control</title><description>Summary
This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>Delay</subject><subject>nonlinear perturbation</subject><subject>norm‐bounded uncertainty</subject><subject>robust stability</subject><subject>Stability analysis</subject><subject>uncertain time‐delay system</subject><subject>Uncertainty analysis</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLpO2WcrgZWBQEMVlSNsTydBJxyRVihsfwWf0SUwdt67-czgfH5wfoVNKZpQQduFdPeMF43toQomUGWVc7o_zXGalZPwQHYWwJiTd2HyCPpabre_eoMENtHr4_vzy2r1Ayga24BpwEYeoK9vaOGDtdDsEG7DpPO5dDT5q67CHqH2THGEIETYBVzqkrXNYG2Md4Gfro01an7xpf-31qDtGB0a3AU7-coqerq8eF7fZ6v5mubhcZTXnhGcgyjI3dZPrpjAyF1SUgsscQBSCzhkRZcGZrAWjheSSGlNVAKSom0JwkZeET9HZzps-fe0hRLXuep9eCYpKQQlllI7U-Y6qfReCB6O23m60HxQlaqxWpWrVWG1Csx36blsY_uXUw93il_8BLJN-9w</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Dey, Rajeeb</creator><creator>Martinez Garcia, Juan Carlos</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171110</creationdate><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><author>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Delay</topic><topic>nonlinear perturbation</topic><topic>norm‐bounded uncertainty</topic><topic>robust stability</topic><topic>Stability analysis</topic><topic>uncertain time‐delay system</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Rajeeb</creatorcontrib><creatorcontrib>Martinez Garcia, Juan Carlos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Rajeeb</au><au>Martinez Garcia, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2017-11-10</date><risdate>2017</risdate><volume>27</volume><issue>16</issue><spage>3028</spage><epage>3042</epage><pages>3028-3042</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/rnc.3723</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3028-3042 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_1951012110 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Delay nonlinear perturbation norm‐bounded uncertainty robust stability Stability analysis uncertain time‐delay system Uncertainty analysis |
title | Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20delay%E2%80%90range%E2%80%90dependent%20stability%20analysis%20for%20uncertain%20retarded%20systems%20based%20on%20affine%20Wirtinger%E2%80%90inequality&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Dey,%20Rajeeb&rft.date=2017-11-10&rft.volume=27&rft.issue=16&rft.spage=3028&rft.epage=3042&rft.pages=3028-3042&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3723&rft_dat=%3Cproquest_cross%3E1951012110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951012110&rft_id=info:pmid/&rfr_iscdi=true |