Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality

Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2017-11, Vol.27 (16), p.3028-3042
Hauptverfasser: Dey, Rajeeb, Martinez Garcia, Juan Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3042
container_issue 16
container_start_page 3028
container_title International journal of robust and nonlinear control
container_volume 27
creator Dey, Rajeeb
Martinez Garcia, Juan Carlos
description Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3723
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1951012110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951012110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLpO2WcrgZWBQEMVlSNsTydBJxyRVihsfwWf0SUwdt67-czgfH5wfoVNKZpQQduFdPeMF43toQomUGWVc7o_zXGalZPwQHYWwJiTd2HyCPpabre_eoMENtHr4_vzy2r1Ayga24BpwEYeoK9vaOGDtdDsEG7DpPO5dDT5q67CHqH2THGEIETYBVzqkrXNYG2Md4Gfro01an7xpf-31qDtGB0a3AU7-coqerq8eF7fZ6v5mubhcZTXnhGcgyjI3dZPrpjAyF1SUgsscQBSCzhkRZcGZrAWjheSSGlNVAKSom0JwkZeET9HZzps-fe0hRLXuep9eCYpKQQlllI7U-Y6qfReCB6O23m60HxQlaqxWpWrVWG1Csx36blsY_uXUw93il_8BLJN-9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951012110</pqid></control><display><type>article</type><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</creator><creatorcontrib>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</creatorcontrib><description>Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3723</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Delay ; nonlinear perturbation ; norm‐bounded uncertainty ; robust stability ; Stability analysis ; uncertain time‐delay system ; Uncertainty analysis</subject><ispartof>International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3028-3042</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</citedby><cites>FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Dey, Rajeeb</creatorcontrib><creatorcontrib>Martinez Garcia, Juan Carlos</creatorcontrib><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><title>International journal of robust and nonlinear control</title><description>Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Delay</subject><subject>nonlinear perturbation</subject><subject>norm‐bounded uncertainty</subject><subject>robust stability</subject><subject>Stability analysis</subject><subject>uncertain time‐delay system</subject><subject>Uncertainty analysis</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLpO2WcrgZWBQEMVlSNsTydBJxyRVihsfwWf0SUwdt67-czgfH5wfoVNKZpQQduFdPeMF43toQomUGWVc7o_zXGalZPwQHYWwJiTd2HyCPpabre_eoMENtHr4_vzy2r1Ayga24BpwEYeoK9vaOGDtdDsEG7DpPO5dDT5q67CHqH2THGEIETYBVzqkrXNYG2Md4Gfro01an7xpf-31qDtGB0a3AU7-coqerq8eF7fZ6v5mubhcZTXnhGcgyjI3dZPrpjAyF1SUgsscQBSCzhkRZcGZrAWjheSSGlNVAKSom0JwkZeET9HZzps-fe0hRLXuep9eCYpKQQlllI7U-Y6qfReCB6O23m60HxQlaqxWpWrVWG1Csx36blsY_uXUw93il_8BLJN-9w</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Dey, Rajeeb</creator><creator>Martinez Garcia, Juan Carlos</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171110</creationdate><title>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</title><author>Dey, Rajeeb ; Martinez Garcia, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-e5886fcd6ad7f9651585396ee5751420587329c52179391ffbbee07cd75356803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Delay</topic><topic>nonlinear perturbation</topic><topic>norm‐bounded uncertainty</topic><topic>robust stability</topic><topic>Stability analysis</topic><topic>uncertain time‐delay system</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Rajeeb</creatorcontrib><creatorcontrib>Martinez Garcia, Juan Carlos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Rajeeb</au><au>Martinez Garcia, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2017-11-10</date><risdate>2017</risdate><volume>27</volume><issue>16</issue><spage>3028</spage><epage>3042</epage><pages>3028-3042</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This note considers the problem of deriving sufficient delay‐range‐dependent stability (DRDS) condition for a general class of uncertain (or nonlinear) retarded system. The stability result is developed by proposing appropriate Lyapunov–Krasovskii functional to effectively utilize the merit of recently proposed affine Wirtinger inequality. The delay upper bound results obtained by the developed condition are found to be less conservative compared with recent results for both nominal and uncertain systems. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/rnc.3723</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3028-3042
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_1951012110
source Wiley Online Library Journals Frontfile Complete
subjects Delay
nonlinear perturbation
norm‐bounded uncertainty
robust stability
Stability analysis
uncertain time‐delay system
Uncertainty analysis
title Improved delay‐range‐dependent stability analysis for uncertain retarded systems based on affine Wirtinger‐inequality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20delay%E2%80%90range%E2%80%90dependent%20stability%20analysis%20for%20uncertain%20retarded%20systems%20based%20on%20affine%20Wirtinger%E2%80%90inequality&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Dey,%20Rajeeb&rft.date=2017-11-10&rft.volume=27&rft.issue=16&rft.spage=3028&rft.epage=3042&rft.pages=3028-3042&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3723&rft_dat=%3Cproquest_cross%3E1951012110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951012110&rft_id=info:pmid/&rfr_iscdi=true