A global convergent outlier robust adaptive predictor for MIMO Hammerstein models

Summary The paper considers the outlier‐robust recursive stochastic approximation algorithm for adaptive prediction of multiple‐input multiple‐output (MIMO) Hammerstein model with a static nonlinear block in polynomial form and a linear block is output error (OE) model. It is assumed that there is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2017-11, Vol.27 (16), p.3350-3371
1. Verfasser: Filipovic, Vojislav Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3371
container_issue 16
container_start_page 3350
container_title International journal of robust and nonlinear control
container_volume 27
creator Filipovic, Vojislav Z.
description Summary The paper considers the outlier‐robust recursive stochastic approximation algorithm for adaptive prediction of multiple‐input multiple‐output (MIMO) Hammerstein model with a static nonlinear block in polynomial form and a linear block is output error (OE) model. It is assumed that there is a priori information about a distribution class to which a real disturbance belongs. Within the framework of these assumptions, the main contributions of this paper are: (i) for MIMO Hammerstein OE model, the stochastic approximation algorithm, based on robust statistics (in the sense of Huber), is derived; (ii) scalar gain of algorithm is exactly determined using the Laplace function; and (iii) a global convergence of robust adaptive predictor is proved. The proof is based on martingale theory and generalized strictly positive real conditions. Practical behavior of algorithm was illustrated by simulations. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1951011991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951011991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-20b9611b8802c061c1142ec1d5446c7d1eda136049428876b73c305dc4ae87c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKvgTwh48bI1k-wrx1LUFlqL0nvIZqdly-5mTXYr_fdNrVcPwwzMNw8-Qh6BTYAx_uJaMxEZS67ICJiUEXAhr891LKNccnFL7rzfMxZ6PB6Rzynd1bbQNTW2PaDbYdtTO_R1hY46Wwy-p7rUXV8dkHYOy8r01tFtiNVitaZz3TTofI9VSxtbYu3vyc1W1x4f_vKYbN5eN7N5tFy_L2bTZWSEYEnEWSFTgCLPGTcsBQMQczRQJnGcmqwELDWINLwd8zzP0iITJsyVJtaYZ0aMydNlbefs94C-V3s7uDZcVCATYABSQqCeL5Rx1nuHW9W5qtHuqICpsy8VfKmzr4BGF_SnqvH4L6e-Pma__Ak8Mmq5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951011991</pqid></control><display><type>article</type><title>A global convergent outlier robust adaptive predictor for MIMO Hammerstein models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Filipovic, Vojislav Z.</creator><creatorcontrib>Filipovic, Vojislav Z.</creatorcontrib><description>Summary The paper considers the outlier‐robust recursive stochastic approximation algorithm for adaptive prediction of multiple‐input multiple‐output (MIMO) Hammerstein model with a static nonlinear block in polynomial form and a linear block is output error (OE) model. It is assumed that there is a priori information about a distribution class to which a real disturbance belongs. Within the framework of these assumptions, the main contributions of this paper are: (i) for MIMO Hammerstein OE model, the stochastic approximation algorithm, based on robust statistics (in the sense of Huber), is derived; (ii) scalar gain of algorithm is exactly determined using the Laplace function; and (iii) a global convergence of robust adaptive predictor is proved. The proof is based on martingale theory and generalized strictly positive real conditions. Practical behavior of algorithm was illustrated by simulations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3705</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive algorithms ; Algorithms ; Approximation ; Computer simulation ; Convergence ; global convergence ; Mathematical analysis ; Mathematical models ; MIMO Hammerstein model ; outliers ; prediction ; Robustness ; stochastic approximation</subject><ispartof>International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3350-3371</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-20b9611b8802c061c1142ec1d5446c7d1eda136049428876b73c305dc4ae87c3</citedby><cites>FETCH-LOGICAL-c3305-20b9611b8802c061c1142ec1d5446c7d1eda136049428876b73c305dc4ae87c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Filipovic, Vojislav Z.</creatorcontrib><title>A global convergent outlier robust adaptive predictor for MIMO Hammerstein models</title><title>International journal of robust and nonlinear control</title><description>Summary The paper considers the outlier‐robust recursive stochastic approximation algorithm for adaptive prediction of multiple‐input multiple‐output (MIMO) Hammerstein model with a static nonlinear block in polynomial form and a linear block is output error (OE) model. It is assumed that there is a priori information about a distribution class to which a real disturbance belongs. Within the framework of these assumptions, the main contributions of this paper are: (i) for MIMO Hammerstein OE model, the stochastic approximation algorithm, based on robust statistics (in the sense of Huber), is derived; (ii) scalar gain of algorithm is exactly determined using the Laplace function; and (iii) a global convergence of robust adaptive predictor is proved. The proof is based on martingale theory and generalized strictly positive real conditions. Practical behavior of algorithm was illustrated by simulations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>global convergence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MIMO Hammerstein model</subject><subject>outliers</subject><subject>prediction</subject><subject>Robustness</subject><subject>stochastic approximation</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKvgTwh48bI1k-wrx1LUFlqL0nvIZqdly-5mTXYr_fdNrVcPwwzMNw8-Qh6BTYAx_uJaMxEZS67ICJiUEXAhr891LKNccnFL7rzfMxZ6PB6Rzynd1bbQNTW2PaDbYdtTO_R1hY46Wwy-p7rUXV8dkHYOy8r01tFtiNVitaZz3TTofI9VSxtbYu3vyc1W1x4f_vKYbN5eN7N5tFy_L2bTZWSEYEnEWSFTgCLPGTcsBQMQczRQJnGcmqwELDWINLwd8zzP0iITJsyVJtaYZ0aMydNlbefs94C-V3s7uDZcVCATYABSQqCeL5Rx1nuHW9W5qtHuqICpsy8VfKmzr4BGF_SnqvH4L6e-Pma__Ak8Mmq5</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Filipovic, Vojislav Z.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171110</creationdate><title>A global convergent outlier robust adaptive predictor for MIMO Hammerstein models</title><author>Filipovic, Vojislav Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-20b9611b8802c061c1142ec1d5446c7d1eda136049428876b73c305dc4ae87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>global convergence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MIMO Hammerstein model</topic><topic>outliers</topic><topic>prediction</topic><topic>Robustness</topic><topic>stochastic approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipovic, Vojislav Z.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipovic, Vojislav Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global convergent outlier robust adaptive predictor for MIMO Hammerstein models</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2017-11-10</date><risdate>2017</risdate><volume>27</volume><issue>16</issue><spage>3350</spage><epage>3371</epage><pages>3350-3371</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary The paper considers the outlier‐robust recursive stochastic approximation algorithm for adaptive prediction of multiple‐input multiple‐output (MIMO) Hammerstein model with a static nonlinear block in polynomial form and a linear block is output error (OE) model. It is assumed that there is a priori information about a distribution class to which a real disturbance belongs. Within the framework of these assumptions, the main contributions of this paper are: (i) for MIMO Hammerstein OE model, the stochastic approximation algorithm, based on robust statistics (in the sense of Huber), is derived; (ii) scalar gain of algorithm is exactly determined using the Laplace function; and (iii) a global convergence of robust adaptive predictor is proved. The proof is based on martingale theory and generalized strictly positive real conditions. Practical behavior of algorithm was illustrated by simulations. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.3705</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2017-11, Vol.27 (16), p.3350-3371
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_1951011991
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive algorithms
Algorithms
Approximation
Computer simulation
Convergence
global convergence
Mathematical analysis
Mathematical models
MIMO Hammerstein model
outliers
prediction
Robustness
stochastic approximation
title A global convergent outlier robust adaptive predictor for MIMO Hammerstein models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20convergent%20outlier%20robust%20adaptive%20predictor%20for%20MIMO%20Hammerstein%20models&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Filipovic,%20Vojislav%20Z.&rft.date=2017-11-10&rft.volume=27&rft.issue=16&rft.spage=3350&rft.epage=3371&rft.pages=3350-3371&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3705&rft_dat=%3Cproquest_cross%3E1951011991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951011991&rft_id=info:pmid/&rfr_iscdi=true