Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets

We present a numerical method for computing the logarithmic capacity of compact subsets of C , which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemnis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2017-12, Vol.17 (4), p.689-713
Hauptverfasser: Liesen, Jörg, Sète, Olivier, Nasser, Mohamed M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 4
container_start_page 689
container_title Computational methods and function theory
container_volume 17
creator Liesen, Jörg
Sète, Olivier
Nasser, Mohamed M. S.
description We present a numerical method for computing the logarithmic capacity of compact subsets of C , which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.
doi_str_mv 10.1007/s40315-017-0207-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950654540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950654540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e415c7c4fcdf26c1f576b6f954abf46133aeed6e8ac2e3d6f10d4c6d995adcf33</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWmA0-8Y2MVUQBqRIDMFuuL20qmgTbGfr2OAoDC9MZ_pvOh9At0HugVD0kThkIQkERWlFF4AwtKqgFYari52gBsig15-oSXaV0oFTwmrEFel2blLHpHF5ZO0aTPW764zBmk9u-w33Aee_xpt-Z2Ob9sbW4MYOxbT5N2mQ1NuN3n9M1ugjmK_mb37tEn-unj-aFbN6eX5vVhlgGMhPPQVhlebAuVNJCEEpuZagFN9vAJTBmvHfSPxpbeeZkAOq4la6uhXE2MLZEd3PvEPvv0aesD_0YuzKpy79UCi4KiyWC2WVjn1L0QQ-xPZp40kD1REzPxHQhpidiGkqmmjOpeLudj3-a_w39AFQ4bjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950654540</pqid></control><display><type>article</type><title>Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets</title><source>Springer Nature - Complete Springer Journals</source><creator>Liesen, Jörg ; Sète, Olivier ; Nasser, Mohamed M. S.</creator><creatorcontrib>Liesen, Jörg ; Sète, Olivier ; Nasser, Mohamed M. S.</creatorcontrib><description>We present a numerical method for computing the logarithmic capacity of compact subsets of C , which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.</description><identifier>ISSN: 1617-9447</identifier><identifier>EISSN: 2195-3724</identifier><identifier>DOI: 10.1007/s40315-017-0207-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Computational Mathematics and Numerical Analysis ; Conformal mapping ; Functions of a Complex Variable ; Integral equations ; Mathematics ; Mathematics and Statistics ; Numerical analysis</subject><ispartof>Computational methods and function theory, 2017-12, Vol.17 (4), p.689-713</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e415c7c4fcdf26c1f576b6f954abf46133aeed6e8ac2e3d6f10d4c6d995adcf33</citedby><cites>FETCH-LOGICAL-c316t-e415c7c4fcdf26c1f576b6f954abf46133aeed6e8ac2e3d6f10d4c6d995adcf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40315-017-0207-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40315-017-0207-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liesen, Jörg</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Nasser, Mohamed M. S.</creatorcontrib><title>Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets</title><title>Computational methods and function theory</title><addtitle>Comput. Methods Funct. Theory</addtitle><description>We present a numerical method for computing the logarithmic capacity of compact subsets of C , which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.</description><subject>Analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conformal mapping</subject><subject>Functions of a Complex Variable</subject><subject>Integral equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><issn>1617-9447</issn><issn>2195-3724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWmA0-8Y2MVUQBqRIDMFuuL20qmgTbGfr2OAoDC9MZ_pvOh9At0HugVD0kThkIQkERWlFF4AwtKqgFYari52gBsig15-oSXaV0oFTwmrEFel2blLHpHF5ZO0aTPW764zBmk9u-w33Aee_xpt-Z2Ob9sbW4MYOxbT5N2mQ1NuN3n9M1ugjmK_mb37tEn-unj-aFbN6eX5vVhlgGMhPPQVhlebAuVNJCEEpuZagFN9vAJTBmvHfSPxpbeeZkAOq4la6uhXE2MLZEd3PvEPvv0aesD_0YuzKpy79UCi4KiyWC2WVjn1L0QQ-xPZp40kD1REzPxHQhpidiGkqmmjOpeLudj3-a_w39AFQ4bjs</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Liesen, Jörg</creator><creator>Sète, Olivier</creator><creator>Nasser, Mohamed M. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets</title><author>Liesen, Jörg ; Sète, Olivier ; Nasser, Mohamed M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e415c7c4fcdf26c1f576b6f954abf46133aeed6e8ac2e3d6f10d4c6d995adcf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conformal mapping</topic><topic>Functions of a Complex Variable</topic><topic>Integral equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liesen, Jörg</creatorcontrib><creatorcontrib>Sète, Olivier</creatorcontrib><creatorcontrib>Nasser, Mohamed M. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational methods and function theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liesen, Jörg</au><au>Sète, Olivier</au><au>Nasser, Mohamed M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets</atitle><jtitle>Computational methods and function theory</jtitle><stitle>Comput. Methods Funct. Theory</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>17</volume><issue>4</issue><spage>689</spage><epage>713</epage><pages>689-713</pages><issn>1617-9447</issn><eissn>2195-3724</eissn><abstract>We present a numerical method for computing the logarithmic capacity of compact subsets of C , which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40315-017-0207-1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-9447
ispartof Computational methods and function theory, 2017-12, Vol.17 (4), p.689-713
issn 1617-9447
2195-3724
language eng
recordid cdi_proquest_journals_1950654540
source Springer Nature - Complete Springer Journals
subjects Analysis
Computational Mathematics and Numerical Analysis
Conformal mapping
Functions of a Complex Variable
Integral equations
Mathematics
Mathematics and Statistics
Numerical analysis
title Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Accurate%20Computation%20of%20the%20Logarithmic%20Capacity%20of%20Compact%20Sets&rft.jtitle=Computational%20methods%20and%20function%20theory&rft.au=Liesen,%20J%C3%B6rg&rft.date=2017-12-01&rft.volume=17&rft.issue=4&rft.spage=689&rft.epage=713&rft.pages=689-713&rft.issn=1617-9447&rft.eissn=2195-3724&rft_id=info:doi/10.1007/s40315-017-0207-1&rft_dat=%3Cproquest_cross%3E1950654540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950654540&rft_id=info:pmid/&rfr_iscdi=true