Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads

We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189
Hauptverfasser: Hwang, Sun-Yong, Sánchez, David, López, Rosa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 10
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 90
creator Hwang, Sun-Yong
Sánchez, David
López, Rosa
description We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate ( Γ R ) is much higher than the ferromagnet-dot tunnel coupling ( Γ L ), and (ii) F-dominant case, when Γ L ≫ Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.
doi_str_mv 10.1140/epjb/e2017-80242-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950462110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950462110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AU8Bz9VMkk3boyx-gehFzyFNp7tdukmdpML-Av-21RXx4mmG4XnfgSfLzoFfAih-hcOmvkLBochLLpTI4SCbgZIq11zqw99dlMfZSYwbzjloULPs4yn4vvNoiWGPLlHnmPUNS2ukbfg9XfuGEN9ZIuvjEChNAIVxtWaWrXc1dQ17G61P45Y1ITEXxqHHqSWwFonC1q48pp_qOA5ILvhmdKnzK9ajbeJpdtTaPuLZz5xnr7c3L8v7_PH57mF5_Zg7CVXKVVtKWyjbgOZ1pfXC1bpta11YWxayhFoALwR3cqHbGlFUpZVK11Xr1EI1aOU8u9j3DhTeRozJbMJIfnppoFpwpQUAnyixpxyFGAlbM1C3tbQzwM2XcPMl3HwLN9_CDUwhuQ_FCfYrpD_V_6c-AaVmiTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950462110</pqid></control><display><type>article</type><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><source>SpringerLink Journals</source><creator>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</creator><creatorcontrib>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</creatorcontrib><description>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate ( Γ R ) is much higher than the ferromagnet-dot tunnel coupling ( Γ L ), and (ii) F-dominant case, when Γ L ≫ Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2017-80242-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Conductors ; Current carriers ; Electric contacts ; Electric potential ; Electrons ; Ferromagnetism ; Fluid- and Aerodynamics ; Particle spin ; Physics ; Physics and Astronomy ; Polarization ; Quantum dots ; Regular Article ; Solid State Physics ; Spintronics ; Superconductivity</subject><ispartof>The European physical journal. B, Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</citedby><cites>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</cites><orcidid>0000-0002-2549-7071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2017-80242-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2017-80242-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hwang, Sun-Yong</creatorcontrib><creatorcontrib>Sánchez, David</creatorcontrib><creatorcontrib>López, Rosa</creatorcontrib><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate ( Γ R ) is much higher than the ferromagnet-dot tunnel coupling ( Γ L ), and (ii) F-dominant case, when Γ L ≫ Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductors</subject><subject>Current carriers</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Fluid- and Aerodynamics</subject><subject>Particle spin</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Superconductivity</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosouK7-AU8Bz9VMkk3boyx-gehFzyFNp7tdukmdpML-Av-21RXx4mmG4XnfgSfLzoFfAih-hcOmvkLBochLLpTI4SCbgZIq11zqw99dlMfZSYwbzjloULPs4yn4vvNoiWGPLlHnmPUNS2ukbfg9XfuGEN9ZIuvjEChNAIVxtWaWrXc1dQ17G61P45Y1ITEXxqHHqSWwFonC1q48pp_qOA5ILvhmdKnzK9ajbeJpdtTaPuLZz5xnr7c3L8v7_PH57mF5_Zg7CVXKVVtKWyjbgOZ1pfXC1bpta11YWxayhFoALwR3cqHbGlFUpZVK11Xr1EI1aOU8u9j3DhTeRozJbMJIfnppoFpwpQUAnyixpxyFGAlbM1C3tbQzwM2XcPMl3HwLN9_CDUwhuQ_FCfYrpD_V_6c-AaVmiTE</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hwang, Sun-Yong</creator><creator>Sánchez, David</creator><creator>López, Rosa</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2549-7071</orcidid></search><sort><creationdate>20171001</creationdate><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><author>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductors</topic><topic>Current carriers</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Fluid- and Aerodynamics</topic><topic>Particle spin</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Sun-Yong</creatorcontrib><creatorcontrib>Sánchez, David</creatorcontrib><creatorcontrib>López, Rosa</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Sun-Yong</au><au>Sánchez, David</au><au>López, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>90</volume><issue>10</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>189</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate ( Γ R ) is much higher than the ferromagnet-dot tunnel coupling ( Γ L ), and (ii) F-dominant case, when Γ L ≫ Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2017-80242-1</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2549-7071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_1950462110
source SpringerLink Journals
subjects Complex Systems
Condensed Matter Physics
Conductors
Current carriers
Electric contacts
Electric potential
Electrons
Ferromagnetism
Fluid- and Aerodynamics
Particle spin
Physics
Physics and Astronomy
Polarization
Quantum dots
Regular Article
Solid State Physics
Spintronics
Superconductivity
title Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20electric%20and%20thermoelectric%20Andreev%20transport%20through%20a%20hybrid%20quantum%20dot%20coupled%20to%20ferromagnetic%20and%20superconducting%20leads&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Hwang,%20Sun-Yong&rft.date=2017-10-01&rft.volume=90&rft.issue=10&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=189&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2017-80242-1&rft_dat=%3Cproquest_cross%3E1950462110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950462110&rft_id=info:pmid/&rfr_iscdi=true