Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads
We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin curr...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 90 |
creator | Hwang, Sun-Yong Sánchez, David López, Rosa |
description | We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (
Γ
R
) is much higher than the ferromagnet-dot tunnel coupling (
Γ
L
), and (ii) F-dominant case, when
Γ
L
≫
Γ
R
. For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted. |
doi_str_mv | 10.1140/epjb/e2017-80242-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950462110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950462110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AU8Bz9VMkk3boyx-gehFzyFNp7tdukmdpML-Av-21RXx4mmG4XnfgSfLzoFfAih-hcOmvkLBochLLpTI4SCbgZIq11zqw99dlMfZSYwbzjloULPs4yn4vvNoiWGPLlHnmPUNS2ukbfg9XfuGEN9ZIuvjEChNAIVxtWaWrXc1dQ17G61P45Y1ITEXxqHHqSWwFonC1q48pp_qOA5ILvhmdKnzK9ajbeJpdtTaPuLZz5xnr7c3L8v7_PH57mF5_Zg7CVXKVVtKWyjbgOZ1pfXC1bpta11YWxayhFoALwR3cqHbGlFUpZVK11Xr1EI1aOU8u9j3DhTeRozJbMJIfnppoFpwpQUAnyixpxyFGAlbM1C3tbQzwM2XcPMl3HwLN9_CDUwhuQ_FCfYrpD_V_6c-AaVmiTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950462110</pqid></control><display><type>article</type><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><source>SpringerLink Journals</source><creator>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</creator><creatorcontrib>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</creatorcontrib><description>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (
Γ
R
) is much higher than the ferromagnet-dot tunnel coupling (
Γ
L
), and (ii) F-dominant case, when
Γ
L
≫
Γ
R
. For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2017-80242-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Conductors ; Current carriers ; Electric contacts ; Electric potential ; Electrons ; Ferromagnetism ; Fluid- and Aerodynamics ; Particle spin ; Physics ; Physics and Astronomy ; Polarization ; Quantum dots ; Regular Article ; Solid State Physics ; Spintronics ; Superconductivity</subject><ispartof>The European physical journal. B, Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</citedby><cites>FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</cites><orcidid>0000-0002-2549-7071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2017-80242-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2017-80242-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hwang, Sun-Yong</creatorcontrib><creatorcontrib>Sánchez, David</creatorcontrib><creatorcontrib>López, Rosa</creatorcontrib><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (
Γ
R
) is much higher than the ferromagnet-dot tunnel coupling (
Γ
L
), and (ii) F-dominant case, when
Γ
L
≫
Γ
R
. For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductors</subject><subject>Current carriers</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Fluid- and Aerodynamics</subject><subject>Particle spin</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Superconductivity</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosouK7-AU8Bz9VMkk3boyx-gehFzyFNp7tdukmdpML-Av-21RXx4mmG4XnfgSfLzoFfAih-hcOmvkLBochLLpTI4SCbgZIq11zqw99dlMfZSYwbzjloULPs4yn4vvNoiWGPLlHnmPUNS2ukbfg9XfuGEN9ZIuvjEChNAIVxtWaWrXc1dQ17G61P45Y1ITEXxqHHqSWwFonC1q48pp_qOA5ILvhmdKnzK9ajbeJpdtTaPuLZz5xnr7c3L8v7_PH57mF5_Zg7CVXKVVtKWyjbgOZ1pfXC1bpta11YWxayhFoALwR3cqHbGlFUpZVK11Xr1EI1aOU8u9j3DhTeRozJbMJIfnppoFpwpQUAnyixpxyFGAlbM1C3tbQzwM2XcPMl3HwLN9_CDUwhuQ_FCfYrpD_V_6c-AaVmiTE</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hwang, Sun-Yong</creator><creator>Sánchez, David</creator><creator>López, Rosa</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2549-7071</orcidid></search><sort><creationdate>20171001</creationdate><title>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</title><author>Hwang, Sun-Yong ; Sánchez, David ; López, Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f83a74ad160b9665cb6ffb67aa87381b210720c356fbee298a346b9fc454dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductors</topic><topic>Current carriers</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Fluid- and Aerodynamics</topic><topic>Particle spin</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Sun-Yong</creatorcontrib><creatorcontrib>Sánchez, David</creatorcontrib><creatorcontrib>López, Rosa</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Sun-Yong</au><au>Sánchez, David</au><au>López, Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>90</volume><issue>10</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>189</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (
Γ
R
) is much higher than the ferromagnet-dot tunnel coupling (
Γ
L
), and (ii) F-dominant case, when
Γ
L
≫
Γ
R
. For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2017-80242-1</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2549-7071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2017-10, Vol.90 (10), p.1-7, Article 189 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_1950462110 |
source | SpringerLink Journals |
subjects | Complex Systems Condensed Matter Physics Conductors Current carriers Electric contacts Electric potential Electrons Ferromagnetism Fluid- and Aerodynamics Particle spin Physics Physics and Astronomy Polarization Quantum dots Regular Article Solid State Physics Spintronics Superconductivity |
title | Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20electric%20and%20thermoelectric%20Andreev%20transport%20through%20a%20hybrid%20quantum%20dot%20coupled%20to%20ferromagnetic%20and%20superconducting%20leads&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Hwang,%20Sun-Yong&rft.date=2017-10-01&rft.volume=90&rft.issue=10&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=189&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2017-80242-1&rft_dat=%3Cproquest_cross%3E1950462110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950462110&rft_id=info:pmid/&rfr_iscdi=true |