A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings

•The proposed model requires only the characterization of stiffness loss.•The ultimate strain remains constant after fatigue damage.•The residual stiffness evolves in the same manner as the strength.•The proposed model predicts fatigue life reasonably well. Fibre-reinforced composites experience a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2017-10, Vol.103, p.508-515
Hauptverfasser: Llobet, J., Maimí, P., Mayugo, J.A., Essa, Y., Martin de la Escalera, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue
container_start_page 508
container_title International journal of fatigue
container_volume 103
creator Llobet, J.
Maimí, P.
Mayugo, J.A.
Essa, Y.
Martin de la Escalera, F.
description •The proposed model requires only the characterization of stiffness loss.•The ultimate strain remains constant after fatigue damage.•The residual stiffness evolves in the same manner as the strength.•The proposed model predicts fatigue life reasonably well. Fibre-reinforced composites experience a degradation of stiffness and strength during fatigue life. Understanding the reduction of these properties is fundamental to establish a reliable fatigue life prediction methodology. This work investigates the loss of stiffness and strength in advanced unidirectional carbon/epoxy laminates under on-axis tension-tension loads. A phenomenological stiffness-based fatigue model is formulated within the framework of continuum damage mechanics, where damage is described by the reduction of the in-plane longitudinal stiffness. The particularity of the model is to assume that the ultimate strain remains constant after fatigue damage. Thus, the residual strength model and the S-N curves are deduced from the residual stiffness model. This assumption reduces the experimental characterization of phenomenological-based approaches. The experimental challenges found in the fatigue experiments are also discussed. The accuracy of the model is verified by comparing the experimental data with the derived S-N curves.
doi_str_mv 10.1016/j.ijfatigue.2017.06.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950425320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112317302761</els_id><sourcerecordid>1950425320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8750d46fce29fd7260a79678bb44d7722bead57b4d3749ea7bdcb6e19bcd530f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwG7DEnPTZceJmrCq-pEosMFuO_VIctXaxE9Qu_HZStWJlusu5V-8dQu4Z5AxYNety17W6d-sBcw5M5lDlwKsLMmFzWWeFKPklmQATPGOMF9fkJqUOAGqQ5YT8LOi5TK3e6jVS7S2NmJwd9IamPqJf9590GyxuaBsiHbyzLqLpXfAjYXRsgp_hLuwP1ITtLiTXYxoxi5EGn-m9S7RHn0Y-OyfdBG2dX6dbctXqTcK7c07Jx9Pj-_IlW709vy4Xq8wUouizuSzBiqo1yOvWSl6BlnUl500jhJWS8wa1LWUjbCFFjVo21jQVsroxtiygLabk4bS7i-FrwNSrLgxxvD8pVpcgeFlwGCl5okwMKUVs1S66rY4HxUAdZatO_clWR9kKKjXKHpuLUxPHJ74dRpWMQ2_wpErZ4P7d-AU1K5AT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950425320</pqid></control><display><type>article</type><title>A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings</title><source>Elsevier ScienceDirect Journals</source><creator>Llobet, J. ; Maimí, P. ; Mayugo, J.A. ; Essa, Y. ; Martin de la Escalera, F.</creator><creatorcontrib>Llobet, J. ; Maimí, P. ; Mayugo, J.A. ; Essa, Y. ; Martin de la Escalera, F.</creatorcontrib><description>•The proposed model requires only the characterization of stiffness loss.•The ultimate strain remains constant after fatigue damage.•The residual stiffness evolves in the same manner as the strength.•The proposed model predicts fatigue life reasonably well. Fibre-reinforced composites experience a degradation of stiffness and strength during fatigue life. Understanding the reduction of these properties is fundamental to establish a reliable fatigue life prediction methodology. This work investigates the loss of stiffness and strength in advanced unidirectional carbon/epoxy laminates under on-axis tension-tension loads. A phenomenological stiffness-based fatigue model is formulated within the framework of continuum damage mechanics, where damage is described by the reduction of the in-plane longitudinal stiffness. The particularity of the model is to assume that the ultimate strain remains constant after fatigue damage. Thus, the residual strength model and the S-N curves are deduced from the residual stiffness model. This assumption reduces the experimental characterization of phenomenological-based approaches. The experimental challenges found in the fatigue experiments are also discussed. The accuracy of the model is verified by comparing the experimental data with the derived S-N curves.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2017.06.026</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon fiber reinforced plastics ; Carbon-epoxy composites ; Comparative analysis ; Continuum damage mechanics ; Crack propagation ; Damage ; Experiments ; Fatigue failure ; Fatigue life ; Fatigue strength ; Fatigue test methods ; Fiber composites ; Fiber reinforced composites ; Fiber reinforced polymers ; Fibre reinforced material ; Laminates ; Life prediction ; Materials fatigue ; Polymer matrix composites ; Reduction ; Residual strength ; S N diagrams ; S-N curves ; Stiffness ; Strain</subject><ispartof>International journal of fatigue, 2017-10, Vol.103, p.508-515</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8750d46fce29fd7260a79678bb44d7722bead57b4d3749ea7bdcb6e19bcd530f3</citedby><cites>FETCH-LOGICAL-c343t-8750d46fce29fd7260a79678bb44d7722bead57b4d3749ea7bdcb6e19bcd530f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112317302761$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Llobet, J.</creatorcontrib><creatorcontrib>Maimí, P.</creatorcontrib><creatorcontrib>Mayugo, J.A.</creatorcontrib><creatorcontrib>Essa, Y.</creatorcontrib><creatorcontrib>Martin de la Escalera, F.</creatorcontrib><title>A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings</title><title>International journal of fatigue</title><description>•The proposed model requires only the characterization of stiffness loss.•The ultimate strain remains constant after fatigue damage.•The residual stiffness evolves in the same manner as the strength.•The proposed model predicts fatigue life reasonably well. Fibre-reinforced composites experience a degradation of stiffness and strength during fatigue life. Understanding the reduction of these properties is fundamental to establish a reliable fatigue life prediction methodology. This work investigates the loss of stiffness and strength in advanced unidirectional carbon/epoxy laminates under on-axis tension-tension loads. A phenomenological stiffness-based fatigue model is formulated within the framework of continuum damage mechanics, where damage is described by the reduction of the in-plane longitudinal stiffness. The particularity of the model is to assume that the ultimate strain remains constant after fatigue damage. Thus, the residual strength model and the S-N curves are deduced from the residual stiffness model. This assumption reduces the experimental characterization of phenomenological-based approaches. The experimental challenges found in the fatigue experiments are also discussed. The accuracy of the model is verified by comparing the experimental data with the derived S-N curves.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon-epoxy composites</subject><subject>Comparative analysis</subject><subject>Continuum damage mechanics</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Experiments</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue strength</subject><subject>Fatigue test methods</subject><subject>Fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fiber reinforced polymers</subject><subject>Fibre reinforced material</subject><subject>Laminates</subject><subject>Life prediction</subject><subject>Materials fatigue</subject><subject>Polymer matrix composites</subject><subject>Reduction</subject><subject>Residual strength</subject><subject>S N diagrams</subject><subject>S-N curves</subject><subject>Stiffness</subject><subject>Strain</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwG7DEnPTZceJmrCq-pEosMFuO_VIctXaxE9Qu_HZStWJlusu5V-8dQu4Z5AxYNety17W6d-sBcw5M5lDlwKsLMmFzWWeFKPklmQATPGOMF9fkJqUOAGqQ5YT8LOi5TK3e6jVS7S2NmJwd9IamPqJf9590GyxuaBsiHbyzLqLpXfAjYXRsgp_hLuwP1ITtLiTXYxoxi5EGn-m9S7RHn0Y-OyfdBG2dX6dbctXqTcK7c07Jx9Pj-_IlW709vy4Xq8wUouizuSzBiqo1yOvWSl6BlnUl500jhJWS8wa1LWUjbCFFjVo21jQVsroxtiygLabk4bS7i-FrwNSrLgxxvD8pVpcgeFlwGCl5okwMKUVs1S66rY4HxUAdZatO_clWR9kKKjXKHpuLUxPHJ74dRpWMQ2_wpErZ4P7d-AU1K5AT</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Llobet, J.</creator><creator>Maimí, P.</creator><creator>Mayugo, J.A.</creator><creator>Essa, Y.</creator><creator>Martin de la Escalera, F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201710</creationdate><title>A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings</title><author>Llobet, J. ; Maimí, P. ; Mayugo, J.A. ; Essa, Y. ; Martin de la Escalera, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8750d46fce29fd7260a79678bb44d7722bead57b4d3749ea7bdcb6e19bcd530f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon-epoxy composites</topic><topic>Comparative analysis</topic><topic>Continuum damage mechanics</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Experiments</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue strength</topic><topic>Fatigue test methods</topic><topic>Fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fiber reinforced polymers</topic><topic>Fibre reinforced material</topic><topic>Laminates</topic><topic>Life prediction</topic><topic>Materials fatigue</topic><topic>Polymer matrix composites</topic><topic>Reduction</topic><topic>Residual strength</topic><topic>S N diagrams</topic><topic>S-N curves</topic><topic>Stiffness</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llobet, J.</creatorcontrib><creatorcontrib>Maimí, P.</creatorcontrib><creatorcontrib>Mayugo, J.A.</creatorcontrib><creatorcontrib>Essa, Y.</creatorcontrib><creatorcontrib>Martin de la Escalera, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llobet, J.</au><au>Maimí, P.</au><au>Mayugo, J.A.</au><au>Essa, Y.</au><au>Martin de la Escalera, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings</atitle><jtitle>International journal of fatigue</jtitle><date>2017-10</date><risdate>2017</risdate><volume>103</volume><spage>508</spage><epage>515</epage><pages>508-515</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The proposed model requires only the characterization of stiffness loss.•The ultimate strain remains constant after fatigue damage.•The residual stiffness evolves in the same manner as the strength.•The proposed model predicts fatigue life reasonably well. Fibre-reinforced composites experience a degradation of stiffness and strength during fatigue life. Understanding the reduction of these properties is fundamental to establish a reliable fatigue life prediction methodology. This work investigates the loss of stiffness and strength in advanced unidirectional carbon/epoxy laminates under on-axis tension-tension loads. A phenomenological stiffness-based fatigue model is formulated within the framework of continuum damage mechanics, where damage is described by the reduction of the in-plane longitudinal stiffness. The particularity of the model is to assume that the ultimate strain remains constant after fatigue damage. Thus, the residual strength model and the S-N curves are deduced from the residual stiffness model. This assumption reduces the experimental characterization of phenomenological-based approaches. The experimental challenges found in the fatigue experiments are also discussed. The accuracy of the model is verified by comparing the experimental data with the derived S-N curves.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2017.06.026</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2017-10, Vol.103, p.508-515
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_1950425320
source Elsevier ScienceDirect Journals
subjects Carbon fiber reinforced plastics
Carbon-epoxy composites
Comparative analysis
Continuum damage mechanics
Crack propagation
Damage
Experiments
Fatigue failure
Fatigue life
Fatigue strength
Fatigue test methods
Fiber composites
Fiber reinforced composites
Fiber reinforced polymers
Fibre reinforced material
Laminates
Life prediction
Materials fatigue
Polymer matrix composites
Reduction
Residual strength
S N diagrams
S-N curves
Stiffness
Strain
title A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fatigue%20damage%20and%20residual%20strength%20model%20for%20unidirectional%20carbon/epoxy%20composites%20under%20on-axis%20tension-tension%20loadings&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Llobet,%20J.&rft.date=2017-10&rft.volume=103&rft.spage=508&rft.epage=515&rft.pages=508-515&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2017.06.026&rft_dat=%3Cproquest_cross%3E1950425320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950425320&rft_id=info:pmid/&rft_els_id=S0142112317302761&rfr_iscdi=true