Recent advances in scaling‐down sampling methods in machine learning
Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be b...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational statistics 2017-11, Vol.9 (6), p.e1414-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e1414 |
container_title | Wiley interdisciplinary reviews. Computational statistics |
container_volume | 9 |
creator | ElRafey, Amr Wojtusiak, Janusz |
description | Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling
Summary of scaling‐down techniques found in literature |
doi_str_mv | 10.1002/wics.1414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950394258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950394258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYPvkHAk4e0s9mPZI9SrBYKgh94XDabqU1JNnW3NfTmI_iMPolJ26vMYeY_85sZ-BNyTWFEAZJxW9owopzyEzKgiqkYQGanx1pQyM7JRQirrpt2MSDTZ7ToNpEpvoyzGKLSRcGaqnQfv98_RdN20tTrXkc1bpZNsUdqY5elw6hC4103uyRnC1MFvDrmIXmb3r9OHuP508NscjePbaJSHqfAOS0sRwDIbc6ETKzIc5ZjQSVkkHIUUkqbImcyNYpLliegjEx4JgqesSG5Odxd--Zzi2GjV83Wu-6lpkoAUzwRPXV7oKxvQvC40Gtf1sbvNAXd26R7m3RvU8eOD2xbVrj7H9Tvs8nLfuMPVFJplQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950394258</pqid></control><display><type>article</type><title>Recent advances in scaling‐down sampling methods in machine learning</title><source>Wiley Online Library Journals</source><creator>ElRafey, Amr ; Wojtusiak, Janusz</creator><creatorcontrib>ElRafey, Amr ; Wojtusiak, Janusz</creatorcontrib><description>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling
Summary of scaling‐down techniques found in literature</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1414</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Artificial intelligence ; Computer networks ; Data ; Data management ; data mining ; Data processing ; Data sampling ; Distributed processing ; evolutionary computation ; health infomratics ; Learning algorithms ; Machine learning ; Random sampling ; Sampling methods ; Sampling techniques ; Scaling ; Statistical analysis ; Statistical sampling</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2017-11, Vol.9 (6), p.e1414-n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</citedby><cites>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1414$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1414$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>ElRafey, Amr</creatorcontrib><creatorcontrib>Wojtusiak, Janusz</creatorcontrib><title>Recent advances in scaling‐down sampling methods in machine learning</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling
Summary of scaling‐down techniques found in literature</description><subject>Artificial intelligence</subject><subject>Computer networks</subject><subject>Data</subject><subject>Data management</subject><subject>data mining</subject><subject>Data processing</subject><subject>Data sampling</subject><subject>Distributed processing</subject><subject>evolutionary computation</subject><subject>health infomratics</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Random sampling</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Scaling</subject><subject>Statistical analysis</subject><subject>Statistical sampling</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQxxdRsFYPvkHAk4e0s9mPZI9SrBYKgh94XDabqU1JNnW3NfTmI_iMPolJ26vMYeY_85sZ-BNyTWFEAZJxW9owopzyEzKgiqkYQGanx1pQyM7JRQirrpt2MSDTZ7ToNpEpvoyzGKLSRcGaqnQfv98_RdN20tTrXkc1bpZNsUdqY5elw6hC4103uyRnC1MFvDrmIXmb3r9OHuP508NscjePbaJSHqfAOS0sRwDIbc6ETKzIc5ZjQSVkkHIUUkqbImcyNYpLliegjEx4JgqesSG5Odxd--Zzi2GjV83Wu-6lpkoAUzwRPXV7oKxvQvC40Gtf1sbvNAXd26R7m3RvU8eOD2xbVrj7H9Tvs8nLfuMPVFJplQ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>ElRafey, Amr</creator><creator>Wojtusiak, Janusz</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201711</creationdate><title>Recent advances in scaling‐down sampling methods in machine learning</title><author>ElRafey, Amr ; Wojtusiak, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computer networks</topic><topic>Data</topic><topic>Data management</topic><topic>data mining</topic><topic>Data processing</topic><topic>Data sampling</topic><topic>Distributed processing</topic><topic>evolutionary computation</topic><topic>health infomratics</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Random sampling</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Scaling</topic><topic>Statistical analysis</topic><topic>Statistical sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElRafey, Amr</creatorcontrib><creatorcontrib>Wojtusiak, Janusz</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElRafey, Amr</au><au>Wojtusiak, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in scaling‐down sampling methods in machine learning</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2017-11</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>e1414</spage><epage>n/a</epage><pages>e1414-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Sampling
Summary of scaling‐down techniques found in literature</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/wics.1414</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5108 |
ispartof | Wiley interdisciplinary reviews. Computational statistics, 2017-11, Vol.9 (6), p.e1414-n/a |
issn | 1939-5108 1939-0068 |
language | eng |
recordid | cdi_proquest_journals_1950394258 |
source | Wiley Online Library Journals |
subjects | Artificial intelligence Computer networks Data Data management data mining Data processing Data sampling Distributed processing evolutionary computation health infomratics Learning algorithms Machine learning Random sampling Sampling methods Sampling techniques Scaling Statistical analysis Statistical sampling |
title | Recent advances in scaling‐down sampling methods in machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20scaling%E2%80%90down%20sampling%20methods%20in%20machine%20learning&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=ElRafey,%20Amr&rft.date=2017-11&rft.volume=9&rft.issue=6&rft.spage=e1414&rft.epage=n/a&rft.pages=e1414-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1414&rft_dat=%3Cproquest_cross%3E1950394258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950394258&rft_id=info:pmid/&rfr_iscdi=true |