Recent advances in scaling‐down sampling methods in machine learning

Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics 2017-11, Vol.9 (6), p.e1414-n/a
Hauptverfasser: ElRafey, Amr, Wojtusiak, Janusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e1414
container_title Wiley interdisciplinary reviews. Computational statistics
container_volume 9
creator ElRafey, Amr
Wojtusiak, Janusz
description Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414 This article is categorized under: Statistical and Graphical Methods of Data Analysis > Sampling Summary of scaling‐down techniques found in literature
doi_str_mv 10.1002/wics.1414
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950394258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950394258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYPvkHAk4e0s9mPZI9SrBYKgh94XDabqU1JNnW3NfTmI_iMPolJ26vMYeY_85sZ-BNyTWFEAZJxW9owopzyEzKgiqkYQGanx1pQyM7JRQirrpt2MSDTZ7ToNpEpvoyzGKLSRcGaqnQfv98_RdN20tTrXkc1bpZNsUdqY5elw6hC4103uyRnC1MFvDrmIXmb3r9OHuP508NscjePbaJSHqfAOS0sRwDIbc6ETKzIc5ZjQSVkkHIUUkqbImcyNYpLliegjEx4JgqesSG5Odxd--Zzi2GjV83Wu-6lpkoAUzwRPXV7oKxvQvC40Gtf1sbvNAXd26R7m3RvU8eOD2xbVrj7H9Tvs8nLfuMPVFJplQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950394258</pqid></control><display><type>article</type><title>Recent advances in scaling‐down sampling methods in machine learning</title><source>Wiley Online Library Journals</source><creator>ElRafey, Amr ; Wojtusiak, Janusz</creator><creatorcontrib>ElRafey, Amr ; Wojtusiak, Janusz</creatorcontrib><description>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414 This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling Summary of scaling‐down techniques found in literature</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1414</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial intelligence ; Computer networks ; Data ; Data management ; data mining ; Data processing ; Data sampling ; Distributed processing ; evolutionary computation ; health infomratics ; Learning algorithms ; Machine learning ; Random sampling ; Sampling methods ; Sampling techniques ; Scaling ; Statistical analysis ; Statistical sampling</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2017-11, Vol.9 (6), p.e1414-n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</citedby><cites>FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1414$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1414$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>ElRafey, Amr</creatorcontrib><creatorcontrib>Wojtusiak, Janusz</creatorcontrib><title>Recent advances in scaling‐down sampling methods in machine learning</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414 This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling Summary of scaling‐down techniques found in literature</description><subject>Artificial intelligence</subject><subject>Computer networks</subject><subject>Data</subject><subject>Data management</subject><subject>data mining</subject><subject>Data processing</subject><subject>Data sampling</subject><subject>Distributed processing</subject><subject>evolutionary computation</subject><subject>health infomratics</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Random sampling</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Scaling</subject><subject>Statistical analysis</subject><subject>Statistical sampling</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQxxdRsFYPvkHAk4e0s9mPZI9SrBYKgh94XDabqU1JNnW3NfTmI_iMPolJ26vMYeY_85sZ-BNyTWFEAZJxW9owopzyEzKgiqkYQGanx1pQyM7JRQirrpt2MSDTZ7ToNpEpvoyzGKLSRcGaqnQfv98_RdN20tTrXkc1bpZNsUdqY5elw6hC4103uyRnC1MFvDrmIXmb3r9OHuP508NscjePbaJSHqfAOS0sRwDIbc6ETKzIc5ZjQSVkkHIUUkqbImcyNYpLliegjEx4JgqesSG5Odxd--Zzi2GjV83Wu-6lpkoAUzwRPXV7oKxvQvC40Gtf1sbvNAXd26R7m3RvU8eOD2xbVrj7H9Tvs8nLfuMPVFJplQ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>ElRafey, Amr</creator><creator>Wojtusiak, Janusz</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201711</creationdate><title>Recent advances in scaling‐down sampling methods in machine learning</title><author>ElRafey, Amr ; Wojtusiak, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-70441dc4e000bcb3562c5bb3bed1608074e5666c7e4367a9463b209a62485d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computer networks</topic><topic>Data</topic><topic>Data management</topic><topic>data mining</topic><topic>Data processing</topic><topic>Data sampling</topic><topic>Distributed processing</topic><topic>evolutionary computation</topic><topic>health infomratics</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Random sampling</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Scaling</topic><topic>Statistical analysis</topic><topic>Statistical sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElRafey, Amr</creatorcontrib><creatorcontrib>Wojtusiak, Janusz</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElRafey, Amr</au><au>Wojtusiak, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in scaling‐down sampling methods in machine learning</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2017-11</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>e1414</spage><epage>n/a</epage><pages>e1414-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>Data sampling methods have been investigated for decades in the context of machine learning and statistical algorithms, with significant progress made in the past few years driven by strong interest in big data and distributed computing. Most recently, progress has been made in methods that can be broadly categorized into random sampling including density‐biased and nonuniform sampling methods; active learning methods, which are a type of semi‐supervised learning and an area of intense research; and progressive sampling methods which can be viewed as a combination of the above two approaches. A unified view of scaling‐down sampling methods is presented in this article and complemented with descriptions of relevant published literature. WIREs Comput Stat 2017, 9:e1414. doi: 10.1002/wics.1414 This article is categorized under: Statistical and Graphical Methods of Data Analysis &gt; Sampling Summary of scaling‐down techniques found in literature</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/wics.1414</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-5108
ispartof Wiley interdisciplinary reviews. Computational statistics, 2017-11, Vol.9 (6), p.e1414-n/a
issn 1939-5108
1939-0068
language eng
recordid cdi_proquest_journals_1950394258
source Wiley Online Library Journals
subjects Artificial intelligence
Computer networks
Data
Data management
data mining
Data processing
Data sampling
Distributed processing
evolutionary computation
health infomratics
Learning algorithms
Machine learning
Random sampling
Sampling methods
Sampling techniques
Scaling
Statistical analysis
Statistical sampling
title Recent advances in scaling‐down sampling methods in machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20scaling%E2%80%90down%20sampling%20methods%20in%20machine%20learning&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=ElRafey,%20Amr&rft.date=2017-11&rft.volume=9&rft.issue=6&rft.spage=e1414&rft.epage=n/a&rft.pages=e1414-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1414&rft_dat=%3Cproquest_cross%3E1950394258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950394258&rft_id=info:pmid/&rfr_iscdi=true