On the parameterization of acoustic detection probability models
Summary Methods that aid in understanding the variation in the detection probability in acoustic telemetry can aid proper interpretations of data derived using such systems. In their recent paper, Huveneers et al. (Methods in Ecology and Evolution, 7, 825‐835, 2016) claim that a general detection pr...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2017-10, Vol.8 (10), p.1302-1304 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1304 |
---|---|
container_issue | 10 |
container_start_page | 1302 |
container_title | Methods in ecology and evolution |
container_volume | 8 |
creator | Gjelland, Karl Ø. Hedger, Richard D. Reynolds, John |
description | Summary
Methods that aid in understanding the variation in the detection probability in acoustic telemetry can aid proper interpretations of data derived using such systems.
In their recent paper, Huveneers et al. (Methods in Ecology and Evolution, 7, 825‐835, 2016) claim that a general detection probability model (Gjelland & Hedger, Methods in Ecology and Evolution, 4, 665–674, 2013) does not have the intended applicability across systems. However, Huveneer et al. applies predictions for a shallow freshwater application to results from a much deeper marine application, which is an invalid use of acoustic theory and the proposed general model.
Users of acoustic telemetry are encouraged to acknowledge how environmentally induced variation in the acoustic attenuation coefficient influences the detection probability, because an understanding of this will aid prediction of how acoustic telemetry systems will work under various environmental conditions. Models used for predictions must be appropriately parameterized.
Proper incorporation of spatiotemporal variation in acoustic detection probability may help reduce effects of environmentally induced biases in detection data. We challenge scientists to make further contributions to how acoustic theory can be incorporated in the modelling of detection probability in acoustic telemetry. |
doi_str_mv | 10.1111/2041-210X.12732 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1950003427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950003427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-a78d0679d006cc8c60905e4d5b2d80a4b91c9556284c2ddabd144c5ce504940b3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLgUvfsteC5u5M0aZubstQPWNmLgreQJilmaTdr0kXWX2-6FfHmu8ww8958PISuMSxwxJIAxRnB8LbApMzJGZr9Vs7_5JdoHsIWIvKKA6EzdLvZpcO7SffSy94MxtsvOVi3S12bSuUOYbAq1bGhTtW9d41sbGeHY9o7bbpwhS5a2QUz_4kJer2vX1aP2Xrz8LS6W2cqZyXJZFlpKEquAQqlKlUAB2aoZg3RFUjacKw4YwWpqCJay0ZjShVThgHlFJo8QTfT3HjCx8GEQWzdwe_iSoE5Gz-i8fMELSeW8i4Eb1qx97aX_igwiNEpMXohRi_EyamoKCbFp-3M8T-6eK7rfBJ-A9YeaeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950003427</pqid></control><display><type>article</type><title>On the parameterization of acoustic detection probability models</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Gjelland, Karl Ø. ; Hedger, Richard D. ; Reynolds, John</creator><contributor>Reynolds, John</contributor><creatorcontrib>Gjelland, Karl Ø. ; Hedger, Richard D. ; Reynolds, John ; Reynolds, John</creatorcontrib><description>Summary
Methods that aid in understanding the variation in the detection probability in acoustic telemetry can aid proper interpretations of data derived using such systems.
In their recent paper, Huveneers et al. (Methods in Ecology and Evolution, 7, 825‐835, 2016) claim that a general detection probability model (Gjelland & Hedger, Methods in Ecology and Evolution, 4, 665–674, 2013) does not have the intended applicability across systems. However, Huveneer et al. applies predictions for a shallow freshwater application to results from a much deeper marine application, which is an invalid use of acoustic theory and the proposed general model.
Users of acoustic telemetry are encouraged to acknowledge how environmentally induced variation in the acoustic attenuation coefficient influences the detection probability, because an understanding of this will aid prediction of how acoustic telemetry systems will work under various environmental conditions. Models used for predictions must be appropriately parameterized.
Proper incorporation of spatiotemporal variation in acoustic detection probability may help reduce effects of environmentally induced biases in detection data. We challenge scientists to make further contributions to how acoustic theory can be incorporated in the modelling of detection probability in acoustic telemetry.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12732</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>Acoustic attenuation ; Acoustic telemetry ; Acoustics ; animal tracking ; Attenuation coefficients ; behavioural ecology ; biotelemetry ; Coefficient of variation ; Data processing ; Ecology ; Environment models ; Environmental conditions ; environmental effects ; Evolution ; habitat use ; movement ecology ; Owls ; Parameterization ; Probabilistic methods ; Sound detecting and ranging ; Telemetry ; Variation</subject><ispartof>Methods in ecology and evolution, 2017-10, Vol.8 (10), p.1302-1304</ispartof><rights>2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2017 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-a78d0679d006cc8c60905e4d5b2d80a4b91c9556284c2ddabd144c5ce504940b3</citedby><cites>FETCH-LOGICAL-c3572-a78d0679d006cc8c60905e4d5b2d80a4b91c9556284c2ddabd144c5ce504940b3</cites><orcidid>0000-0003-4036-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12732$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12732$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Reynolds, John</contributor><creatorcontrib>Gjelland, Karl Ø.</creatorcontrib><creatorcontrib>Hedger, Richard D.</creatorcontrib><creatorcontrib>Reynolds, John</creatorcontrib><title>On the parameterization of acoustic detection probability models</title><title>Methods in ecology and evolution</title><description>Summary
Methods that aid in understanding the variation in the detection probability in acoustic telemetry can aid proper interpretations of data derived using such systems.
In their recent paper, Huveneers et al. (Methods in Ecology and Evolution, 7, 825‐835, 2016) claim that a general detection probability model (Gjelland & Hedger, Methods in Ecology and Evolution, 4, 665–674, 2013) does not have the intended applicability across systems. However, Huveneer et al. applies predictions for a shallow freshwater application to results from a much deeper marine application, which is an invalid use of acoustic theory and the proposed general model.
Users of acoustic telemetry are encouraged to acknowledge how environmentally induced variation in the acoustic attenuation coefficient influences the detection probability, because an understanding of this will aid prediction of how acoustic telemetry systems will work under various environmental conditions. Models used for predictions must be appropriately parameterized.
Proper incorporation of spatiotemporal variation in acoustic detection probability may help reduce effects of environmentally induced biases in detection data. We challenge scientists to make further contributions to how acoustic theory can be incorporated in the modelling of detection probability in acoustic telemetry.</description><subject>Acoustic attenuation</subject><subject>Acoustic telemetry</subject><subject>Acoustics</subject><subject>animal tracking</subject><subject>Attenuation coefficients</subject><subject>behavioural ecology</subject><subject>biotelemetry</subject><subject>Coefficient of variation</subject><subject>Data processing</subject><subject>Ecology</subject><subject>Environment models</subject><subject>Environmental conditions</subject><subject>environmental effects</subject><subject>Evolution</subject><subject>habitat use</subject><subject>movement ecology</subject><subject>Owls</subject><subject>Parameterization</subject><subject>Probabilistic methods</subject><subject>Sound detecting and ranging</subject><subject>Telemetry</subject><subject>Variation</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLgUvfsteC5u5M0aZubstQPWNmLgreQJilmaTdr0kXWX2-6FfHmu8ww8958PISuMSxwxJIAxRnB8LbApMzJGZr9Vs7_5JdoHsIWIvKKA6EzdLvZpcO7SffSy94MxtsvOVi3S12bSuUOYbAq1bGhTtW9d41sbGeHY9o7bbpwhS5a2QUz_4kJer2vX1aP2Xrz8LS6W2cqZyXJZFlpKEquAQqlKlUAB2aoZg3RFUjacKw4YwWpqCJay0ZjShVThgHlFJo8QTfT3HjCx8GEQWzdwe_iSoE5Gz-i8fMELSeW8i4Eb1qx97aX_igwiNEpMXohRi_EyamoKCbFp-3M8T-6eK7rfBJ-A9YeaeI</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Gjelland, Karl Ø.</creator><creator>Hedger, Richard D.</creator><creator>Reynolds, John</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-4036-4207</orcidid></search><sort><creationdate>201710</creationdate><title>On the parameterization of acoustic detection probability models</title><author>Gjelland, Karl Ø. ; Hedger, Richard D. ; Reynolds, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-a78d0679d006cc8c60905e4d5b2d80a4b91c9556284c2ddabd144c5ce504940b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic telemetry</topic><topic>Acoustics</topic><topic>animal tracking</topic><topic>Attenuation coefficients</topic><topic>behavioural ecology</topic><topic>biotelemetry</topic><topic>Coefficient of variation</topic><topic>Data processing</topic><topic>Ecology</topic><topic>Environment models</topic><topic>Environmental conditions</topic><topic>environmental effects</topic><topic>Evolution</topic><topic>habitat use</topic><topic>movement ecology</topic><topic>Owls</topic><topic>Parameterization</topic><topic>Probabilistic methods</topic><topic>Sound detecting and ranging</topic><topic>Telemetry</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gjelland, Karl Ø.</creatorcontrib><creatorcontrib>Hedger, Richard D.</creatorcontrib><creatorcontrib>Reynolds, John</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gjelland, Karl Ø.</au><au>Hedger, Richard D.</au><au>Reynolds, John</au><au>Reynolds, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the parameterization of acoustic detection probability models</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2017-10</date><risdate>2017</risdate><volume>8</volume><issue>10</issue><spage>1302</spage><epage>1304</epage><pages>1302-1304</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary
Methods that aid in understanding the variation in the detection probability in acoustic telemetry can aid proper interpretations of data derived using such systems.
In their recent paper, Huveneers et al. (Methods in Ecology and Evolution, 7, 825‐835, 2016) claim that a general detection probability model (Gjelland & Hedger, Methods in Ecology and Evolution, 4, 665–674, 2013) does not have the intended applicability across systems. However, Huveneer et al. applies predictions for a shallow freshwater application to results from a much deeper marine application, which is an invalid use of acoustic theory and the proposed general model.
Users of acoustic telemetry are encouraged to acknowledge how environmentally induced variation in the acoustic attenuation coefficient influences the detection probability, because an understanding of this will aid prediction of how acoustic telemetry systems will work under various environmental conditions. Models used for predictions must be appropriately parameterized.
Proper incorporation of spatiotemporal variation in acoustic detection probability may help reduce effects of environmentally induced biases in detection data. We challenge scientists to make further contributions to how acoustic theory can be incorporated in the modelling of detection probability in acoustic telemetry.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.12732</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-4036-4207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2017-10, Vol.8 (10), p.1302-1304 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_proquest_journals_1950003427 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Acoustic attenuation Acoustic telemetry Acoustics animal tracking Attenuation coefficients behavioural ecology biotelemetry Coefficient of variation Data processing Ecology Environment models Environmental conditions environmental effects Evolution habitat use movement ecology Owls Parameterization Probabilistic methods Sound detecting and ranging Telemetry Variation |
title | On the parameterization of acoustic detection probability models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20parameterization%20of%20acoustic%20detection%20probability%20models&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Gjelland,%20Karl%20%C3%98.&rft.date=2017-10&rft.volume=8&rft.issue=10&rft.spage=1302&rft.epage=1304&rft.pages=1302-1304&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12732&rft_dat=%3Cproquest_cross%3E1950003427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950003427&rft_id=info:pmid/&rfr_iscdi=true |