Multiple summation inequalities and their application to stability analysis of discrete-time delay systems
This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for sin...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2017-01, Vol.354 (1), p.123-144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Journal of the Franklin Institute |
container_volume | 354 |
creator | Gyurkovics, É. Kiss, K. Nagy, I. Takács, T. |
description | This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method. |
doi_str_mv | 10.1016/j.jfranklin.2016.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949673994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003216303623</els_id><sourcerecordid>1949673994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhinWAnbVIvq4qXVMSme8uxJ2JCXvU4SPl7XBWxZTWvM1czl7F7KVIpZPHYpE3tTf_VYp9msRG7qRDFBVvITamSrFD5JVuIOEmEyLNrdkPUxLKUQixY8z61AccWOE1dZwIOPccejpNpMSAQN73j4RPQczOOLdozEgZOwVQYoTkipp0JiQ81d0jWQ4AkYAfcQWtmTjMF6OiWXdWmJbj7jUt2eH467F6T_cfL2267T2yuspCAs_Hw2tZWmlqWxUqtVW0ryEspSyGNNJDlwm1iWgjpoNpIp6ASWVVKZ9b5kj2cZUc_HCegoJth8vFE0lKtVFHmSq0iVZ4p6wciD7UePXbGz1oKffJVN_rPV33y9TSIvsbN7XkT4g_fCF6TRegtOPRgg3YD_qvxA-uziKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949673994</pqid></control><display><type>article</type><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><source>Elsevier ScienceDirect Journals</source><creator>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</creator><creatorcontrib>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</creatorcontrib><description>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2016.10.006</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Convex analysis ; Delay time analysis ; Discrete time systems ; Functionals ; Inequalities ; Numerical methods ; Polynomials ; Stability analysis ; Time delay systems</subject><ispartof>Journal of the Franklin Institute, 2017-01, Vol.354 (1), p.123-144</ispartof><rights>2016 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</citedby><cites>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</cites><orcidid>0000-0003-2355-4113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003216303623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gyurkovics, É.</creatorcontrib><creatorcontrib>Kiss, K.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Takács, T.</creatorcontrib><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><title>Journal of the Franklin Institute</title><description>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</description><subject>Convex analysis</subject><subject>Delay time analysis</subject><subject>Discrete time systems</subject><subject>Functionals</subject><subject>Inequalities</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Time delay systems</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhinWAnbVIvq4qXVMSme8uxJ2JCXvU4SPl7XBWxZTWvM1czl7F7KVIpZPHYpE3tTf_VYp9msRG7qRDFBVvITamSrFD5JVuIOEmEyLNrdkPUxLKUQixY8z61AccWOE1dZwIOPccejpNpMSAQN73j4RPQczOOLdozEgZOwVQYoTkipp0JiQ81d0jWQ4AkYAfcQWtmTjMF6OiWXdWmJbj7jUt2eH467F6T_cfL2267T2yuspCAs_Hw2tZWmlqWxUqtVW0ryEspSyGNNJDlwm1iWgjpoNpIp6ASWVVKZ9b5kj2cZUc_HCegoJth8vFE0lKtVFHmSq0iVZ4p6wciD7UePXbGz1oKffJVN_rPV33y9TSIvsbN7XkT4g_fCF6TRegtOPRgg3YD_qvxA-uziKM</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Gyurkovics, É.</creator><creator>Kiss, K.</creator><creator>Nagy, I.</creator><creator>Takács, T.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2355-4113</orcidid></search><sort><creationdate>201701</creationdate><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><author>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convex analysis</topic><topic>Delay time analysis</topic><topic>Discrete time systems</topic><topic>Functionals</topic><topic>Inequalities</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Time delay systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyurkovics, É.</creatorcontrib><creatorcontrib>Kiss, K.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Takács, T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyurkovics, É.</au><au>Kiss, K.</au><au>Nagy, I.</au><au>Takács, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2017-01</date><risdate>2017</risdate><volume>354</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2016.10.006</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2355-4113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2017-01, Vol.354 (1), p.123-144 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_1949673994 |
source | Elsevier ScienceDirect Journals |
subjects | Convex analysis Delay time analysis Discrete time systems Functionals Inequalities Numerical methods Polynomials Stability analysis Time delay systems |
title | Multiple summation inequalities and their application to stability analysis of discrete-time delay systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20summation%20inequalities%20and%20their%20application%20to%20stability%20analysis%20of%20discrete-time%20delay%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Gyurkovics,%20%C3%89.&rft.date=2017-01&rft.volume=354&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2016.10.006&rft_dat=%3Cproquest_cross%3E1949673994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949673994&rft_id=info:pmid/&rft_els_id=S0016003216303623&rfr_iscdi=true |