Multiple summation inequalities and their application to stability analysis of discrete-time delay systems

This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2017-01, Vol.354 (1), p.123-144
Hauptverfasser: Gyurkovics, É., Kiss, K., Nagy, I., Takács, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 123
container_title Journal of the Franklin Institute
container_volume 354
creator Gyurkovics, É.
Kiss, K.
Nagy, I.
Takács, T.
description This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.
doi_str_mv 10.1016/j.jfranklin.2016.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949673994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003216303623</els_id><sourcerecordid>1949673994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhinWAnbVIvq4qXVMSme8uxJ2JCXvU4SPl7XBWxZTWvM1czl7F7KVIpZPHYpE3tTf_VYp9msRG7qRDFBVvITamSrFD5JVuIOEmEyLNrdkPUxLKUQixY8z61AccWOE1dZwIOPccejpNpMSAQN73j4RPQczOOLdozEgZOwVQYoTkipp0JiQ81d0jWQ4AkYAfcQWtmTjMF6OiWXdWmJbj7jUt2eH467F6T_cfL2267T2yuspCAs_Hw2tZWmlqWxUqtVW0ryEspSyGNNJDlwm1iWgjpoNpIp6ASWVVKZ9b5kj2cZUc_HCegoJth8vFE0lKtVFHmSq0iVZ4p6wciD7UePXbGz1oKffJVN_rPV33y9TSIvsbN7XkT4g_fCF6TRegtOPRgg3YD_qvxA-uziKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949673994</pqid></control><display><type>article</type><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><source>Elsevier ScienceDirect Journals</source><creator>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</creator><creatorcontrib>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</creatorcontrib><description>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2016.10.006</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Convex analysis ; Delay time analysis ; Discrete time systems ; Functionals ; Inequalities ; Numerical methods ; Polynomials ; Stability analysis ; Time delay systems</subject><ispartof>Journal of the Franklin Institute, 2017-01, Vol.354 (1), p.123-144</ispartof><rights>2016 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</citedby><cites>FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</cites><orcidid>0000-0003-2355-4113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003216303623$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gyurkovics, É.</creatorcontrib><creatorcontrib>Kiss, K.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Takács, T.</creatorcontrib><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><title>Journal of the Franklin Institute</title><description>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</description><subject>Convex analysis</subject><subject>Delay time analysis</subject><subject>Discrete time systems</subject><subject>Functionals</subject><subject>Inequalities</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Time delay systems</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhinWAnbVIvq4qXVMSme8uxJ2JCXvU4SPl7XBWxZTWvM1czl7F7KVIpZPHYpE3tTf_VYp9msRG7qRDFBVvITamSrFD5JVuIOEmEyLNrdkPUxLKUQixY8z61AccWOE1dZwIOPccejpNpMSAQN73j4RPQczOOLdozEgZOwVQYoTkipp0JiQ81d0jWQ4AkYAfcQWtmTjMF6OiWXdWmJbj7jUt2eH467F6T_cfL2267T2yuspCAs_Hw2tZWmlqWxUqtVW0ryEspSyGNNJDlwm1iWgjpoNpIp6ASWVVKZ9b5kj2cZUc_HCegoJth8vFE0lKtVFHmSq0iVZ4p6wciD7UePXbGz1oKffJVN_rPV33y9TSIvsbN7XkT4g_fCF6TRegtOPRgg3YD_qvxA-uziKM</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Gyurkovics, É.</creator><creator>Kiss, K.</creator><creator>Nagy, I.</creator><creator>Takács, T.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2355-4113</orcidid></search><sort><creationdate>201701</creationdate><title>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</title><author>Gyurkovics, É. ; Kiss, K. ; Nagy, I. ; Takács, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-edc187fcfc1af1764959fcbe3711701a1ae230d801a601deb81d9eb02b71da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convex analysis</topic><topic>Delay time analysis</topic><topic>Discrete time systems</topic><topic>Functionals</topic><topic>Inequalities</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Time delay systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyurkovics, É.</creatorcontrib><creatorcontrib>Kiss, K.</creatorcontrib><creatorcontrib>Nagy, I.</creatorcontrib><creatorcontrib>Takács, T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyurkovics, É.</au><au>Kiss, K.</au><au>Nagy, I.</au><au>Takács, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple summation inequalities and their application to stability analysis of discrete-time delay systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2017-01</date><risdate>2017</risdate><volume>354</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen׳s and Wirtinger׳s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2016.10.006</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2355-4113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2017-01, Vol.354 (1), p.123-144
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_1949673994
source Elsevier ScienceDirect Journals
subjects Convex analysis
Delay time analysis
Discrete time systems
Functionals
Inequalities
Numerical methods
Polynomials
Stability analysis
Time delay systems
title Multiple summation inequalities and their application to stability analysis of discrete-time delay systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20summation%20inequalities%20and%20their%20application%20to%20stability%20analysis%20of%20discrete-time%20delay%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Gyurkovics,%20%C3%89.&rft.date=2017-01&rft.volume=354&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2016.10.006&rft_dat=%3Cproquest_cross%3E1949673994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949673994&rft_id=info:pmid/&rft_els_id=S0016003216303623&rfr_iscdi=true