Generic Gӧdel’s Incompleteness Theorem
Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if,...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2017-07, Vol.56 (3), p.232-235 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 3 |
container_start_page | 232 |
container_title | Algebra and logic |
container_volume | 56 |
creator | Rybalov, A. N. |
description | Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [
3
], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1). |
doi_str_mv | 10.1007/s10469-017-9442-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949657931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949657931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</originalsourceid><addsrcrecordid>eNp1kD1OAzEQRi0EEuHnAHSRqCgMY6_X9pQoghApEk2oraw9hkTJbrCTgo5rcAIOxA04CY6WgoZqNJr3fSM9xi4EXAsAc5MFKI0chOGolOR4wAaiNhW3FchDNgAAyWtZyWN2kvOyrKgtDNjVmFpKCz8cf30GWn2_f-ThpPXderOibTnlPJy9UJdofcaO4nyV6fx3nrKn-7vZ6IFPH8eT0e2Ue2Er5FEp36BWwpJujIkGAcFG61VjlIlS-aACzmXUVBvSWtYhENoQTGga8KY6ZZd97yZ1rzvKW7fsdqktL51Ahbo2WIlCiZ7yqcs5UXSbtFjP05sT4PZGXG_EFSNub8Rhycg-kwvbPlP60_xv6AdO1mPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949657931</pqid></control><display><type>article</type><title>Generic Gӧdel’s Incompleteness Theorem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rybalov, A. N.</creator><creatorcontrib>Rybalov, A. N.</creatorcontrib><description>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [
3
], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-017-9442-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Arithmetic ; Axioms ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Algebra and logic, 2017-07, Vol.56 (3), p.232-235</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-017-9442-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-017-9442-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rybalov, A. N.</creatorcontrib><title>Generic Gӧdel’s Incompleteness Theorem</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [
3
], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Axioms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OAzEQRi0EEuHnAHSRqCgMY6_X9pQoghApEk2oraw9hkTJbrCTgo5rcAIOxA04CY6WgoZqNJr3fSM9xi4EXAsAc5MFKI0chOGolOR4wAaiNhW3FchDNgAAyWtZyWN2kvOyrKgtDNjVmFpKCz8cf30GWn2_f-ThpPXderOibTnlPJy9UJdofcaO4nyV6fx3nrKn-7vZ6IFPH8eT0e2Ue2Er5FEp36BWwpJujIkGAcFG61VjlIlS-aACzmXUVBvSWtYhENoQTGga8KY6ZZd97yZ1rzvKW7fsdqktL51Ahbo2WIlCiZ7yqcs5UXSbtFjP05sT4PZGXG_EFSNub8Rhycg-kwvbPlP60_xv6AdO1mPE</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Rybalov, A. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Generic Gӧdel’s Incompleteness Theorem</title><author>Rybalov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Axioms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybalov, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybalov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Gӧdel’s Incompleteness Theorem</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>56</volume><issue>3</issue><spage>232</spage><epage>235</epage><pages>232-235</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [
3
], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-017-9442-9</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5232 |
ispartof | Algebra and logic, 2017-07, Vol.56 (3), p.232-235 |
issn | 0002-5232 1573-8302 |
language | eng |
recordid | cdi_proquest_journals_1949657931 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Arithmetic Axioms Mathematical Logic and Foundations Mathematics Mathematics and Statistics Theorems |
title | Generic Gӧdel’s Incompleteness Theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20G%D3%A7del%E2%80%99s%20Incompleteness%20Theorem&rft.jtitle=Algebra%20and%20logic&rft.au=Rybalov,%20A.%20N.&rft.date=2017-07-01&rft.volume=56&rft.issue=3&rft.spage=232&rft.epage=235&rft.pages=232-235&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-017-9442-9&rft_dat=%3Cproquest_cross%3E1949657931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949657931&rft_id=info:pmid/&rfr_iscdi=true |