Generic Gӧdel’s Incompleteness Theorem

Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2017-07, Vol.56 (3), p.232-235
1. Verfasser: Rybalov, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 3
container_start_page 232
container_title Algebra and logic
container_volume 56
creator Rybalov, A. N.
description Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).
doi_str_mv 10.1007/s10469-017-9442-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949657931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949657931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</originalsourceid><addsrcrecordid>eNp1kD1OAzEQRi0EEuHnAHSRqCgMY6_X9pQoghApEk2oraw9hkTJbrCTgo5rcAIOxA04CY6WgoZqNJr3fSM9xi4EXAsAc5MFKI0chOGolOR4wAaiNhW3FchDNgAAyWtZyWN2kvOyrKgtDNjVmFpKCz8cf30GWn2_f-ThpPXderOibTnlPJy9UJdofcaO4nyV6fx3nrKn-7vZ6IFPH8eT0e2Ue2Er5FEp36BWwpJujIkGAcFG61VjlIlS-aACzmXUVBvSWtYhENoQTGga8KY6ZZd97yZ1rzvKW7fsdqktL51Ahbo2WIlCiZ7yqcs5UXSbtFjP05sT4PZGXG_EFSNub8Rhycg-kwvbPlP60_xv6AdO1mPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949657931</pqid></control><display><type>article</type><title>Generic Gӧdel’s Incompleteness Theorem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rybalov, A. N.</creator><creatorcontrib>Rybalov, A. N.</creatorcontrib><description>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-017-9442-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Arithmetic ; Axioms ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Algebra and logic, 2017-07, Vol.56 (3), p.232-235</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-017-9442-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-017-9442-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rybalov, A. N.</creatorcontrib><title>Generic Gӧdel’s Incompleteness Theorem</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Axioms</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OAzEQRi0EEuHnAHSRqCgMY6_X9pQoghApEk2oraw9hkTJbrCTgo5rcAIOxA04CY6WgoZqNJr3fSM9xi4EXAsAc5MFKI0chOGolOR4wAaiNhW3FchDNgAAyWtZyWN2kvOyrKgtDNjVmFpKCz8cf30GWn2_f-ThpPXderOibTnlPJy9UJdofcaO4nyV6fx3nrKn-7vZ6IFPH8eT0e2Ue2Er5FEp36BWwpJujIkGAcFG61VjlIlS-aACzmXUVBvSWtYhENoQTGga8KY6ZZd97yZ1rzvKW7fsdqktL51Ahbo2WIlCiZ7yqcs5UXSbtFjP05sT4PZGXG_EFSNub8Rhycg-kwvbPlP60_xv6AdO1mPE</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Rybalov, A. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Generic Gӧdel’s Incompleteness Theorem</title><author>Rybalov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1839-f44cb96418e6b77f790908f8c4b747f24cd4d9a2f6e57e6625dde98dd7dbb0c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Axioms</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybalov, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybalov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Gӧdel’s Incompleteness Theorem</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>56</volume><issue>3</issue><spage>232</spage><epage>235</epage><pages>232-235</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [ 3 ], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-017-9442-9</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2017-07, Vol.56 (3), p.232-235
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_1949657931
source SpringerLink Journals - AutoHoldings
subjects Algebra
Arithmetic
Axioms
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Theorems
title Generic Gӧdel’s Incompleteness Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20G%D3%A7del%E2%80%99s%20Incompleteness%20Theorem&rft.jtitle=Algebra%20and%20logic&rft.au=Rybalov,%20A.%20N.&rft.date=2017-07-01&rft.volume=56&rft.issue=3&rft.spage=232&rft.epage=235&rft.pages=232-235&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-017-9442-9&rft_dat=%3Cproquest_cross%3E1949657931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949657931&rft_id=info:pmid/&rfr_iscdi=true