Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil

The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP 3 ) will penetrate 3 to 5 meter into the Martian subsurface to investigate the plan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space science reviews 2017-10, Vol.211 (1-4), p.217-236
Hauptverfasser: Poganski, Joshua, Kömle, Norbert I., Kargl, Günter, Schweiger, Helmut F., Grott, Matthias, Spohn, Tilman, Krömer, Olaf, Krause, Christian, Wippermann, Torben, Tsakyridis, Georgios, Fittock, Mark, Lichtenheldt, Roy, Vrettos, Christos, Andrade, José E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 1-4
container_start_page 217
container_title Space science reviews
container_volume 211
creator Poganski, Joshua
Kömle, Norbert I.
Kargl, Günter
Schweiger, Helmut F.
Grott, Matthias
Spohn, Tilman
Krömer, Olaf
Krause, Christian
Wippermann, Torben
Tsakyridis, Georgios
Fittock, Mark
Lichtenheldt, Roy
Vrettos, Christos
Andrade, José E.
description The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP 3 ) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP 3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP 3 . A pile driving model has been developed considering all masses of the hammering mechanism of HP 3 . By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight /HP 3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.
doi_str_mv 10.1007/s11214-016-0302-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949610961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949610961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-3bf40fecbeddad147262cdce8ee2a5c3b68b869e87f477fa9bf1f1d06d830fb43</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAc12Sdml7lDndYMOCeg5t82XLqMlMMtH9elPrwYuHj8CX93k_eBC6puSWEpJPPKWMZgmhPCEpYcnxBI3oNGdJyXN2ikaEpEXCU1Kcowvvd4T0VD5Ccv4ZwEiQuNId4HunP7TZ4LWV0OFgceVA6jbgsAVcgYHg6qCtwVb9rJbG6802TBZVGplYoE2E-p917YKuDX62urtEZ6ruPFz9vmP0-jB_mS2S1dPjcna3SlqW8ZCkjcqIgrYBKWtJs5xx1soWCgBWT9u04UVT8BKKXGV5ruqyUVRRSbgsUqKaLB2jm6F37-z7AXwQO3twJp4UtMxKTkmcmKJDqnXWewdK7J1-q92XoET0WsQgU0SZopcpjpFhA-Nj1mzA_Wn-F_oGPGx4PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949610961</pqid></control><display><type>article</type><title>Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil</title><source>SpringerNature Journals</source><creator>Poganski, Joshua ; Kömle, Norbert I. ; Kargl, Günter ; Schweiger, Helmut F. ; Grott, Matthias ; Spohn, Tilman ; Krömer, Olaf ; Krause, Christian ; Wippermann, Torben ; Tsakyridis, Georgios ; Fittock, Mark ; Lichtenheldt, Roy ; Vrettos, Christos ; Andrade, José E.</creator><creatorcontrib>Poganski, Joshua ; Kömle, Norbert I. ; Kargl, Günter ; Schweiger, Helmut F. ; Grott, Matthias ; Spohn, Tilman ; Krömer, Olaf ; Krause, Christian ; Wippermann, Torben ; Tsakyridis, Georgios ; Fittock, Mark ; Lichtenheldt, Roy ; Vrettos, Christos ; Andrade, José E.</creatorcontrib><description>The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP 3 ) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP 3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP 3 . A pile driving model has been developed considering all masses of the hammering mechanism of HP 3 . By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight /HP 3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-016-0302-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Computer simulation ; Extraterrestrial life ; Heat flow ; Heat transfer ; Heat transmission ; Mars ; Mars landing ; Mars soil ; Mars surface ; Mathematical models ; Numerical simulations ; Penetration ; Physical properties ; Physics ; Physics and Astronomy ; Pile driving ; Planetology ; Soil investigations ; Soil layers ; Soil physical properties ; Soil properties ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spacecraft</subject><ispartof>Space science reviews, 2017-10, Vol.211 (1-4), p.217-236</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Space Science Reviews is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-3bf40fecbeddad147262cdce8ee2a5c3b68b869e87f477fa9bf1f1d06d830fb43</citedby><cites>FETCH-LOGICAL-c246t-3bf40fecbeddad147262cdce8ee2a5c3b68b869e87f477fa9bf1f1d06d830fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-016-0302-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-016-0302-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Poganski, Joshua</creatorcontrib><creatorcontrib>Kömle, Norbert I.</creatorcontrib><creatorcontrib>Kargl, Günter</creatorcontrib><creatorcontrib>Schweiger, Helmut F.</creatorcontrib><creatorcontrib>Grott, Matthias</creatorcontrib><creatorcontrib>Spohn, Tilman</creatorcontrib><creatorcontrib>Krömer, Olaf</creatorcontrib><creatorcontrib>Krause, Christian</creatorcontrib><creatorcontrib>Wippermann, Torben</creatorcontrib><creatorcontrib>Tsakyridis, Georgios</creatorcontrib><creatorcontrib>Fittock, Mark</creatorcontrib><creatorcontrib>Lichtenheldt, Roy</creatorcontrib><creatorcontrib>Vrettos, Christos</creatorcontrib><creatorcontrib>Andrade, José E.</creatorcontrib><title>Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP 3 ) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP 3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP 3 . A pile driving model has been developed considering all masses of the hammering mechanism of HP 3 . By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight /HP 3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Computer simulation</subject><subject>Extraterrestrial life</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Mars</subject><subject>Mars landing</subject><subject>Mars soil</subject><subject>Mars surface</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Penetration</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pile driving</subject><subject>Planetology</subject><subject>Soil investigations</subject><subject>Soil layers</subject><subject>Soil physical properties</subject><subject>Soil properties</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spacecraft</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAc12Sdml7lDndYMOCeg5t82XLqMlMMtH9elPrwYuHj8CX93k_eBC6puSWEpJPPKWMZgmhPCEpYcnxBI3oNGdJyXN2ikaEpEXCU1Kcowvvd4T0VD5Ccv4ZwEiQuNId4HunP7TZ4LWV0OFgceVA6jbgsAVcgYHg6qCtwVb9rJbG6802TBZVGplYoE2E-p917YKuDX62urtEZ6ruPFz9vmP0-jB_mS2S1dPjcna3SlqW8ZCkjcqIgrYBKWtJs5xx1soWCgBWT9u04UVT8BKKXGV5ruqyUVRRSbgsUqKaLB2jm6F37-z7AXwQO3twJp4UtMxKTkmcmKJDqnXWewdK7J1-q92XoET0WsQgU0SZopcpjpFhA-Nj1mzA_Wn-F_oGPGx4PA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Poganski, Joshua</creator><creator>Kömle, Norbert I.</creator><creator>Kargl, Günter</creator><creator>Schweiger, Helmut F.</creator><creator>Grott, Matthias</creator><creator>Spohn, Tilman</creator><creator>Krömer, Olaf</creator><creator>Krause, Christian</creator><creator>Wippermann, Torben</creator><creator>Tsakyridis, Georgios</creator><creator>Fittock, Mark</creator><creator>Lichtenheldt, Roy</creator><creator>Vrettos, Christos</creator><creator>Andrade, José E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil</title><author>Poganski, Joshua ; Kömle, Norbert I. ; Kargl, Günter ; Schweiger, Helmut F. ; Grott, Matthias ; Spohn, Tilman ; Krömer, Olaf ; Krause, Christian ; Wippermann, Torben ; Tsakyridis, Georgios ; Fittock, Mark ; Lichtenheldt, Roy ; Vrettos, Christos ; Andrade, José E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-3bf40fecbeddad147262cdce8ee2a5c3b68b869e87f477fa9bf1f1d06d830fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Computer simulation</topic><topic>Extraterrestrial life</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Mars</topic><topic>Mars landing</topic><topic>Mars soil</topic><topic>Mars surface</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Penetration</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pile driving</topic><topic>Planetology</topic><topic>Soil investigations</topic><topic>Soil layers</topic><topic>Soil physical properties</topic><topic>Soil properties</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poganski, Joshua</creatorcontrib><creatorcontrib>Kömle, Norbert I.</creatorcontrib><creatorcontrib>Kargl, Günter</creatorcontrib><creatorcontrib>Schweiger, Helmut F.</creatorcontrib><creatorcontrib>Grott, Matthias</creatorcontrib><creatorcontrib>Spohn, Tilman</creatorcontrib><creatorcontrib>Krömer, Olaf</creatorcontrib><creatorcontrib>Krause, Christian</creatorcontrib><creatorcontrib>Wippermann, Torben</creatorcontrib><creatorcontrib>Tsakyridis, Georgios</creatorcontrib><creatorcontrib>Fittock, Mark</creatorcontrib><creatorcontrib>Lichtenheldt, Roy</creatorcontrib><creatorcontrib>Vrettos, Christos</creatorcontrib><creatorcontrib>Andrade, José E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poganski, Joshua</au><au>Kömle, Norbert I.</au><au>Kargl, Günter</au><au>Schweiger, Helmut F.</au><au>Grott, Matthias</au><au>Spohn, Tilman</au><au>Krömer, Olaf</au><au>Krause, Christian</au><au>Wippermann, Torben</au><au>Tsakyridis, Georgios</au><au>Fittock, Mark</au><au>Lichtenheldt, Roy</au><au>Vrettos, Christos</au><au>Andrade, José E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>211</volume><issue>1-4</issue><spage>217</spage><epage>236</epage><pages>217-236</pages><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP 3 ) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP 3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP 3 . A pile driving model has been developed considering all masses of the hammering mechanism of HP 3 . By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight /HP 3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-016-0302-z</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-6308
ispartof Space science reviews, 2017-10, Vol.211 (1-4), p.217-236
issn 0038-6308
1572-9672
language eng
recordid cdi_proquest_journals_1949610961
source SpringerNature Journals
subjects Aerospace Technology and Astronautics
Astrophysics and Astroparticles
Computer simulation
Extraterrestrial life
Heat flow
Heat transfer
Heat transmission
Mars
Mars landing
Mars soil
Mars surface
Mathematical models
Numerical simulations
Penetration
Physical properties
Physics
Physics and Astronomy
Pile driving
Planetology
Soil investigations
Soil layers
Soil physical properties
Soil properties
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spacecraft
title Extended Pile Driving Model to Predict the Penetration of the Insight/HP3 Mole into the Martian Soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Pile%20Driving%20Model%20to%20Predict%20the%20Penetration%20of%20the%20Insight/HP3%20Mole%20into%20the%20Martian%20Soil&rft.jtitle=Space%20science%20reviews&rft.au=Poganski,%20Joshua&rft.date=2017-10-01&rft.volume=211&rft.issue=1-4&rft.spage=217&rft.epage=236&rft.pages=217-236&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-016-0302-z&rft_dat=%3Cproquest_cross%3E1949610961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949610961&rft_id=info:pmid/&rfr_iscdi=true