Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals
The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5627 |
---|---|
container_issue | 11 |
container_start_page | 5616 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 48 |
creator | Manoylov, Anton Lebon, Bruno Djambazov, Georgi Pericleous, Koulis |
description | The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used
via
an immersed sonotrode, or alternatively
via
electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation. |
doi_str_mv | 10.1007/s11661-017-4321-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949495068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949495068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTb4EcfNsqS8pFYgAWvLdezgKo1bOylizY_jEoTYoFnMLO65Ix0Azgm-JBiLq0hInhOEiUAZowTxAzAiPGOIFBk-TDcWDPGcsmNwEuMKY0wKlo_AZ-n7TePaGnoLp9r3sXMalmrnOtU538J3173BmVmjaxVNBZ9USIHGwGff7EyI0PoAF74y3x0zg1RdN35twkCn0l-ibFL5HnEtnLtt7yq4MJ1q4ik4smmZs589Bq-3Ny_lPZo_3j2U0znSjBcdUlRYwpfYFLSitBBWEG0yo5QuhNa2yBnjhhNFKeZ0OcmtFrTCFReYaWZxxcbgYujdBL_tTezkyvehTS9lspSG43ySUmRI6eBjDMbKTXBrFT4kwXLvWg6uZXIt964lTwwdmJiybW3Cn-Z_oS_GBILC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949495068</pqid></control><display><type>article</type><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><source>SpringerLink_现刊</source><creator>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</creator><creatorcontrib>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</creatorcontrib><description>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used
via
an immersed sonotrode, or alternatively
via
electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-017-4321-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic coupling ; Acoustics ; Aerospace industry ; Agglomerated defects ; Aluminum ; Automobile industry ; Automotive engineering ; Breakup ; Cavitation ; Ceramic matrix composites ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clusters ; Computational fluid dynamics ; Discrete element method ; Dislocations ; Elastic waves ; Fluid flow ; Fuel consumption ; Liquid metals ; Materials Science ; Metal matrix composites ; Metallic Materials ; Nanotechnology ; Particulate composites ; Properties (attributes) ; Solvers ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Ultrasonic processing ; Weight reduction</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627</ispartof><rights>The Author(s) 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</citedby><cites>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-017-4321-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-017-4321-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Manoylov, Anton</creatorcontrib><creatorcontrib>Lebon, Bruno</creatorcontrib><creatorcontrib>Djambazov, Georgi</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used
via
an immersed sonotrode, or alternatively
via
electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</description><subject>Acoustic coupling</subject><subject>Acoustics</subject><subject>Aerospace industry</subject><subject>Agglomerated defects</subject><subject>Aluminum</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Breakup</subject><subject>Cavitation</subject><subject>Ceramic matrix composites</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>Dislocations</subject><subject>Elastic waves</subject><subject>Fluid flow</subject><subject>Fuel consumption</subject><subject>Liquid metals</subject><subject>Materials Science</subject><subject>Metal matrix composites</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Properties (attributes)</subject><subject>Solvers</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Ultrasonic processing</subject><subject>Weight reduction</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTb4EcfNsqS8pFYgAWvLdezgKo1bOylizY_jEoTYoFnMLO65Ix0Azgm-JBiLq0hInhOEiUAZowTxAzAiPGOIFBk-TDcWDPGcsmNwEuMKY0wKlo_AZ-n7TePaGnoLp9r3sXMalmrnOtU538J3173BmVmjaxVNBZ9USIHGwGff7EyI0PoAF74y3x0zg1RdN35twkCn0l-ibFL5HnEtnLtt7yq4MJ1q4ik4smmZs589Bq-3Ny_lPZo_3j2U0znSjBcdUlRYwpfYFLSitBBWEG0yo5QuhNa2yBnjhhNFKeZ0OcmtFrTCFReYaWZxxcbgYujdBL_tTezkyvehTS9lspSG43ySUmRI6eBjDMbKTXBrFT4kwXLvWg6uZXIt964lTwwdmJiybW3Cn-Z_oS_GBILC</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Manoylov, Anton</creator><creator>Lebon, Bruno</creator><creator>Djambazov, Georgi</creator><creator>Pericleous, Koulis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20171101</creationdate><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><author>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic coupling</topic><topic>Acoustics</topic><topic>Aerospace industry</topic><topic>Agglomerated defects</topic><topic>Aluminum</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Breakup</topic><topic>Cavitation</topic><topic>Ceramic matrix composites</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>Dislocations</topic><topic>Elastic waves</topic><topic>Fluid flow</topic><topic>Fuel consumption</topic><topic>Liquid metals</topic><topic>Materials Science</topic><topic>Metal matrix composites</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Properties (attributes)</topic><topic>Solvers</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Ultrasonic processing</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoylov, Anton</creatorcontrib><creatorcontrib>Lebon, Bruno</creatorcontrib><creatorcontrib>Djambazov, Georgi</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoylov, Anton</au><au>Lebon, Bruno</au><au>Djambazov, Georgi</au><au>Pericleous, Koulis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>48</volume><issue>11</issue><spage>5616</spage><epage>5627</epage><pages>5616-5627</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used
via
an immersed sonotrode, or alternatively
via
electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-017-4321-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1949495068 |
source | SpringerLink_现刊 |
subjects | Acoustic coupling Acoustics Aerospace industry Agglomerated defects Aluminum Automobile industry Automotive engineering Breakup Cavitation Ceramic matrix composites Characterization and Evaluation of Materials Chemistry and Materials Science Clusters Computational fluid dynamics Discrete element method Dislocations Elastic waves Fluid flow Fuel consumption Liquid metals Materials Science Metal matrix composites Metallic Materials Nanotechnology Particulate composites Properties (attributes) Solvers Structural Materials Surfaces and Interfaces Thin Films Ultrasonic processing Weight reduction |
title | Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20Acoustic%20Cavitation%20with%20Dem-Based%20Particle%20Solvers%20for%20Modeling%20De-agglomeration%20of%20Particle%20Clusters%20in%20Liquid%20Metals&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Manoylov,%20Anton&rft.date=2017-11-01&rft.volume=48&rft.issue=11&rft.spage=5616&rft.epage=5627&rft.pages=5616-5627&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-017-4321-5&rft_dat=%3Cproquest_cross%3E1949495068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949495068&rft_id=info:pmid/&rfr_iscdi=true |