Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627
Hauptverfasser: Manoylov, Anton, Lebon, Bruno, Djambazov, Georgi, Pericleous, Koulis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5627
container_issue 11
container_start_page 5616
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 48
creator Manoylov, Anton
Lebon, Bruno
Djambazov, Georgi
Pericleous, Koulis
description The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.
doi_str_mv 10.1007/s11661-017-4321-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949495068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949495068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTb4EcfNsqS8pFYgAWvLdezgKo1bOylizY_jEoTYoFnMLO65Ix0Azgm-JBiLq0hInhOEiUAZowTxAzAiPGOIFBk-TDcWDPGcsmNwEuMKY0wKlo_AZ-n7TePaGnoLp9r3sXMalmrnOtU538J3173BmVmjaxVNBZ9USIHGwGff7EyI0PoAF74y3x0zg1RdN35twkCn0l-ibFL5HnEtnLtt7yq4MJ1q4ik4smmZs589Bq-3Ny_lPZo_3j2U0znSjBcdUlRYwpfYFLSitBBWEG0yo5QuhNa2yBnjhhNFKeZ0OcmtFrTCFReYaWZxxcbgYujdBL_tTezkyvehTS9lspSG43ySUmRI6eBjDMbKTXBrFT4kwXLvWg6uZXIt964lTwwdmJiybW3Cn-Z_oS_GBILC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949495068</pqid></control><display><type>article</type><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><source>SpringerLink_现刊</source><creator>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</creator><creatorcontrib>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</creatorcontrib><description>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-017-4321-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic coupling ; Acoustics ; Aerospace industry ; Agglomerated defects ; Aluminum ; Automobile industry ; Automotive engineering ; Breakup ; Cavitation ; Ceramic matrix composites ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clusters ; Computational fluid dynamics ; Discrete element method ; Dislocations ; Elastic waves ; Fluid flow ; Fuel consumption ; Liquid metals ; Materials Science ; Metal matrix composites ; Metallic Materials ; Nanotechnology ; Particulate composites ; Properties (attributes) ; Solvers ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Ultrasonic processing ; Weight reduction</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627</ispartof><rights>The Author(s) 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</citedby><cites>FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-017-4321-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-017-4321-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Manoylov, Anton</creatorcontrib><creatorcontrib>Lebon, Bruno</creatorcontrib><creatorcontrib>Djambazov, Georgi</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</description><subject>Acoustic coupling</subject><subject>Acoustics</subject><subject>Aerospace industry</subject><subject>Agglomerated defects</subject><subject>Aluminum</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Breakup</subject><subject>Cavitation</subject><subject>Ceramic matrix composites</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>Dislocations</subject><subject>Elastic waves</subject><subject>Fluid flow</subject><subject>Fuel consumption</subject><subject>Liquid metals</subject><subject>Materials Science</subject><subject>Metal matrix composites</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Properties (attributes)</subject><subject>Solvers</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Ultrasonic processing</subject><subject>Weight reduction</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTb4EcfNsqS8pFYgAWvLdezgKo1bOylizY_jEoTYoFnMLO65Ix0Azgm-JBiLq0hInhOEiUAZowTxAzAiPGOIFBk-TDcWDPGcsmNwEuMKY0wKlo_AZ-n7TePaGnoLp9r3sXMalmrnOtU538J3173BmVmjaxVNBZ9USIHGwGff7EyI0PoAF74y3x0zg1RdN35twkCn0l-ibFL5HnEtnLtt7yq4MJ1q4ik4smmZs589Bq-3Ny_lPZo_3j2U0znSjBcdUlRYwpfYFLSitBBWEG0yo5QuhNa2yBnjhhNFKeZ0OcmtFrTCFReYaWZxxcbgYujdBL_tTezkyvehTS9lspSG43ySUmRI6eBjDMbKTXBrFT4kwXLvWg6uZXIt964lTwwdmJiybW3Cn-Z_oS_GBILC</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Manoylov, Anton</creator><creator>Lebon, Bruno</creator><creator>Djambazov, Georgi</creator><creator>Pericleous, Koulis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20171101</creationdate><title>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</title><author>Manoylov, Anton ; Lebon, Bruno ; Djambazov, Georgi ; Pericleous, Koulis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a27f15b0e92d2297f71ce4eaac97ccf96335e51a22052b86fc72d0d5703c3f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic coupling</topic><topic>Acoustics</topic><topic>Aerospace industry</topic><topic>Agglomerated defects</topic><topic>Aluminum</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Breakup</topic><topic>Cavitation</topic><topic>Ceramic matrix composites</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>Dislocations</topic><topic>Elastic waves</topic><topic>Fluid flow</topic><topic>Fuel consumption</topic><topic>Liquid metals</topic><topic>Materials Science</topic><topic>Metal matrix composites</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Properties (attributes)</topic><topic>Solvers</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Ultrasonic processing</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoylov, Anton</creatorcontrib><creatorcontrib>Lebon, Bruno</creatorcontrib><creatorcontrib>Djambazov, Georgi</creatorcontrib><creatorcontrib>Pericleous, Koulis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoylov, Anton</au><au>Lebon, Bruno</au><au>Djambazov, Georgi</au><au>Pericleous, Koulis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>48</volume><issue>11</issue><spage>5616</spage><epage>5627</epage><pages>5616-5627</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-017-4321-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-11, Vol.48 (11), p.5616-5627
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1949495068
source SpringerLink_现刊
subjects Acoustic coupling
Acoustics
Aerospace industry
Agglomerated defects
Aluminum
Automobile industry
Automotive engineering
Breakup
Cavitation
Ceramic matrix composites
Characterization and Evaluation of Materials
Chemistry and Materials Science
Clusters
Computational fluid dynamics
Discrete element method
Dislocations
Elastic waves
Fluid flow
Fuel consumption
Liquid metals
Materials Science
Metal matrix composites
Metallic Materials
Nanotechnology
Particulate composites
Properties (attributes)
Solvers
Structural Materials
Surfaces and Interfaces
Thin Films
Ultrasonic processing
Weight reduction
title Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20Acoustic%20Cavitation%20with%20Dem-Based%20Particle%20Solvers%20for%20Modeling%20De-agglomeration%20of%20Particle%20Clusters%20in%20Liquid%20Metals&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Manoylov,%20Anton&rft.date=2017-11-01&rft.volume=48&rft.issue=11&rft.spage=5616&rft.epage=5627&rft.pages=5616-5627&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-017-4321-5&rft_dat=%3Cproquest_cross%3E1949495068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949495068&rft_id=info:pmid/&rfr_iscdi=true