Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils
The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedim...
Gespeichert in:
Veröffentlicht in: | Biology and fertility of soils 2017-11, Vol.53 (8), p.873-884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 8 |
container_start_page | 873 |
container_title | Biology and fertility of soils |
container_volume | 53 |
creator | Pingree, Melissa R. A. Makoto, Kobayashi DeLuca, Thomas H. |
description | The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of
Eisenia japonica
(Michaelsen) earthworms and 500 kg ha
−1
of dwarf bamboo charcoal (
Sasa kurilensis
(Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl
2
(soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml
−1
(enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg
−1
prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg
−1
± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg
−1
± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools. |
doi_str_mv | 10.1007/s00374-017-1227-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949490965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949490965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f1157df5bc1dddcc234c6afb5245fc33cece935867ebdcb523aebbc2516e91803</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm032KMWPQsGLnkMym9gt201Ndiv990brwYsMw8DM874DL0LXjN4yStVdplSoilCmCONcEX2CZqwSnFClm1M0KwdNuKr5ObrIeUMpk5o1M5SWw-iThbHbe-xD8DBmHAOGtU0QbY_t0GJv07j-jGmLf8BuPOBugORt9th10e5t11vXe7xbx1w6TbkAOE-OuFiwHocy8ohz7Pp8ic6C7bO_-p1z9Pb48Lp4JquXp-XifkVAaD6SwJhUbZAOWNu2AFxUUNvgJK9kACHAg2-E1LXyroWyFtY7B1yy2jdMUzFHN0ffXYofU3lvNnFKQ3lpWFOVok0tC8WOFKSYc_LB7FK3telgGDXf0ZpjtKYkaL6jNbpo-FGTCzu8-_TH-V_RF71jf1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949490965</pqid></control><display><type>article</type><title>Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pingree, Melissa R. A. ; Makoto, Kobayashi ; DeLuca, Thomas H.</creator><creatorcontrib>Pingree, Melissa R. A. ; Makoto, Kobayashi ; DeLuca, Thomas H.</creatorcontrib><description>The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of
Eisenia japonica
(Michaelsen) earthworms and 500 kg ha
−1
of dwarf bamboo charcoal (
Sasa kurilensis
(Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl
2
(soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml
−1
(enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg
−1
prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg
−1
± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg
−1
± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools.</description><identifier>ISSN: 0178-2762</identifier><identifier>EISSN: 1432-0789</identifier><identifier>DOI: 10.1007/s00374-017-1227-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Bamboo ; Bioavailability ; Biomedical and Life Sciences ; Boreal forests ; Calcium chloride ; Charcoal ; Citric acid ; Eisenia japonica ; Enzymes ; Forest soils ; Incubation period ; Life Sciences ; Methods ; Microcosms ; Original Paper ; Phosphatase ; Phosphorus ; Plant extracts ; Sasa kurilensis ; Serpentine ; Soil ; Soil Science & Conservation ; Soil types ; Taiga ; Wildfires ; Worms</subject><ispartof>Biology and fertility of soils, 2017-11, Vol.53 (8), p.873-884</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Biology and Fertility of Soils is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f1157df5bc1dddcc234c6afb5245fc33cece935867ebdcb523aebbc2516e91803</citedby><cites>FETCH-LOGICAL-c382t-f1157df5bc1dddcc234c6afb5245fc33cece935867ebdcb523aebbc2516e91803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00374-017-1227-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00374-017-1227-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pingree, Melissa R. A.</creatorcontrib><creatorcontrib>Makoto, Kobayashi</creatorcontrib><creatorcontrib>DeLuca, Thomas H.</creatorcontrib><title>Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils</title><title>Biology and fertility of soils</title><addtitle>Biol Fertil Soils</addtitle><description>The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of
Eisenia japonica
(Michaelsen) earthworms and 500 kg ha
−1
of dwarf bamboo charcoal (
Sasa kurilensis
(Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl
2
(soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml
−1
(enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg
−1
prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg
−1
± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg
−1
± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools.</description><subject>Agriculture</subject><subject>Bamboo</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>Boreal forests</subject><subject>Calcium chloride</subject><subject>Charcoal</subject><subject>Citric acid</subject><subject>Eisenia japonica</subject><subject>Enzymes</subject><subject>Forest soils</subject><subject>Incubation period</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microcosms</subject><subject>Original Paper</subject><subject>Phosphatase</subject><subject>Phosphorus</subject><subject>Plant extracts</subject><subject>Sasa kurilensis</subject><subject>Serpentine</subject><subject>Soil</subject><subject>Soil Science & Conservation</subject><subject>Soil types</subject><subject>Taiga</subject><subject>Wildfires</subject><subject>Worms</subject><issn>0178-2762</issn><issn>1432-0789</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm032KMWPQsGLnkMym9gt201Ndiv990brwYsMw8DM874DL0LXjN4yStVdplSoilCmCONcEX2CZqwSnFClm1M0KwdNuKr5ObrIeUMpk5o1M5SWw-iThbHbe-xD8DBmHAOGtU0QbY_t0GJv07j-jGmLf8BuPOBugORt9th10e5t11vXe7xbx1w6TbkAOE-OuFiwHocy8ohz7Pp8ic6C7bO_-p1z9Pb48Lp4JquXp-XifkVAaD6SwJhUbZAOWNu2AFxUUNvgJK9kACHAg2-E1LXyroWyFtY7B1yy2jdMUzFHN0ffXYofU3lvNnFKQ3lpWFOVok0tC8WOFKSYc_LB7FK3telgGDXf0ZpjtKYkaL6jNbpo-FGTCzu8-_TH-V_RF71jf1c</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Pingree, Melissa R. A.</creator><creator>Makoto, Kobayashi</creator><creator>DeLuca, Thomas H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20171101</creationdate><title>Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils</title><author>Pingree, Melissa R. A. ; Makoto, Kobayashi ; DeLuca, Thomas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f1157df5bc1dddcc234c6afb5245fc33cece935867ebdcb523aebbc2516e91803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Bamboo</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>Boreal forests</topic><topic>Calcium chloride</topic><topic>Charcoal</topic><topic>Citric acid</topic><topic>Eisenia japonica</topic><topic>Enzymes</topic><topic>Forest soils</topic><topic>Incubation period</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microcosms</topic><topic>Original Paper</topic><topic>Phosphatase</topic><topic>Phosphorus</topic><topic>Plant extracts</topic><topic>Sasa kurilensis</topic><topic>Serpentine</topic><topic>Soil</topic><topic>Soil Science & Conservation</topic><topic>Soil types</topic><topic>Taiga</topic><topic>Wildfires</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pingree, Melissa R. A.</creatorcontrib><creatorcontrib>Makoto, Kobayashi</creatorcontrib><creatorcontrib>DeLuca, Thomas H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biology and fertility of soils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pingree, Melissa R. A.</au><au>Makoto, Kobayashi</au><au>DeLuca, Thomas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils</atitle><jtitle>Biology and fertility of soils</jtitle><stitle>Biol Fertil Soils</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>53</volume><issue>8</issue><spage>873</spage><epage>884</epage><pages>873-884</pages><issn>0178-2762</issn><eissn>1432-0789</eissn><abstract>The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of
Eisenia japonica
(Michaelsen) earthworms and 500 kg ha
−1
of dwarf bamboo charcoal (
Sasa kurilensis
(Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl
2
(soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml
−1
(enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg
−1
prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg
−1
± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg
−1
± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00374-017-1227-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2762 |
ispartof | Biology and fertility of soils, 2017-11, Vol.53 (8), p.873-884 |
issn | 0178-2762 1432-0789 |
language | eng |
recordid | cdi_proquest_journals_1949490965 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Bamboo Bioavailability Biomedical and Life Sciences Boreal forests Calcium chloride Charcoal Citric acid Eisenia japonica Enzymes Forest soils Incubation period Life Sciences Methods Microcosms Original Paper Phosphatase Phosphorus Plant extracts Sasa kurilensis Serpentine Soil Soil Science & Conservation Soil types Taiga Wildfires Worms |
title | Interactive effects of charcoal and earthworm activity increase bioavailable phosphorus in sub-boreal forest soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20effects%20of%20charcoal%20and%20earthworm%20activity%20increase%20bioavailable%20phosphorus%20in%20sub-boreal%20forest%20soils&rft.jtitle=Biology%20and%20fertility%20of%20soils&rft.au=Pingree,%20Melissa%20R.%20A.&rft.date=2017-11-01&rft.volume=53&rft.issue=8&rft.spage=873&rft.epage=884&rft.pages=873-884&rft.issn=0178-2762&rft.eissn=1432-0789&rft_id=info:doi/10.1007/s00374-017-1227-8&rft_dat=%3Cproquest_cross%3E1949490965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949490965&rft_id=info:pmid/&rfr_iscdi=true |