Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer
A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a hi...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. C 2011-03, Vol.8 (3), p.1071-1074 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1074 |
---|---|
container_issue | 3 |
container_start_page | 1071 |
container_title | Physica status solidi. C |
container_volume | 8 |
creator | Yokoi, Hideki Igarashi, Shun Uchiumi, Yuki Tani, Kazuya |
description | A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssc.201000308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949119850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949119850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3108-ddbca512658aab607b7cf576d05e0a2cb5e3b53683c7fcc125aa0b38b43c08ef3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4soqNOr54DnzpemSbujDp2yocIUjyFNXme0NjXJnPvvrVTEm6f34_F978EvSU4ojClAdtaFoMcZ9BkYlDvJARUUUirybLfPpchSwTjdTw5DeOkRDlQcJDhTvsVIumcXXWt1INFtlDfE4Ac2rrPtijQqoCfGOoPEthFXXkU0ZGPjM3FdtFo1xAbXqOj8sF1aslpbM8hb9EfJXq2agMc_c5Q8Xl0-TK_Txd3sZnq-SDWjUKbGVFpxmgleKlUJKKpC17wQBjiCynTFkVWciZLpotaaZlwpqFhZ5UxDiTUbJafD3c679zWGKF_c2rf9S0kn-YTSScmhp8YDpb0LwWMtO2_flN9KCvK7Svldpfytshcmg7CxDW7_oeX9cjn966aDa0PEz19X-VcpClZw-XQ7kyDm8_kFz2XBvgDPV4kq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949119850</pqid></control><display><type>article</type><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><source>Wiley Online Library All Journals</source><creator>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</creator><creatorcontrib>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</creatorcontrib><description>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201000308</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Diodes ; garnet ; Lasers ; nonreciprocal phase shift ; optical isolator ; Optics ; Phase shift ; Photonics ; Wave propagation</subject><ispartof>Physica status solidi. C, 2011-03, Vol.8 (3), p.1071-1074</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201000308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201000308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yokoi, Hideki</creatorcontrib><creatorcontrib>Igarashi, Shun</creatorcontrib><creatorcontrib>Uchiumi, Yuki</creatorcontrib><creatorcontrib>Tani, Kazuya</creatorcontrib><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi (c)</addtitle><description>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>Diodes</subject><subject>garnet</subject><subject>Lasers</subject><subject>nonreciprocal phase shift</subject><subject>optical isolator</subject><subject>Optics</subject><subject>Phase shift</subject><subject>Photonics</subject><subject>Wave propagation</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4soqNOr54DnzpemSbujDp2yocIUjyFNXme0NjXJnPvvrVTEm6f34_F978EvSU4ojClAdtaFoMcZ9BkYlDvJARUUUirybLfPpchSwTjdTw5DeOkRDlQcJDhTvsVIumcXXWt1INFtlDfE4Ac2rrPtijQqoCfGOoPEthFXXkU0ZGPjM3FdtFo1xAbXqOj8sF1aslpbM8hb9EfJXq2agMc_c5Q8Xl0-TK_Txd3sZnq-SDWjUKbGVFpxmgleKlUJKKpC17wQBjiCynTFkVWciZLpotaaZlwpqFhZ5UxDiTUbJafD3c679zWGKF_c2rf9S0kn-YTSScmhp8YDpb0LwWMtO2_flN9KCvK7Svldpfytshcmg7CxDW7_oeX9cjn966aDa0PEz19X-VcpClZw-XQ7kyDm8_kFz2XBvgDPV4kq</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Yokoi, Hideki</creator><creator>Igarashi, Shun</creator><creator>Uchiumi, Yuki</creator><creator>Tani, Kazuya</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201103</creationdate><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><author>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3108-ddbca512658aab607b7cf576d05e0a2cb5e3b53683c7fcc125aa0b38b43c08ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Diodes</topic><topic>garnet</topic><topic>Lasers</topic><topic>nonreciprocal phase shift</topic><topic>optical isolator</topic><topic>Optics</topic><topic>Phase shift</topic><topic>Photonics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoi, Hideki</creatorcontrib><creatorcontrib>Igarashi, Shun</creatorcontrib><creatorcontrib>Uchiumi, Yuki</creatorcontrib><creatorcontrib>Tani, Kazuya</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoi, Hideki</au><au>Igarashi, Shun</au><au>Uchiumi, Yuki</au><au>Tani, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi (c)</addtitle><date>2011-03</date><risdate>2011</risdate><volume>8</volume><issue>3</issue><spage>1071</spage><epage>1074</epage><pages>1071-1074</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201000308</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6351 |
ispartof | Physica status solidi. C, 2011-03, Vol.8 (3), p.1071-1074 |
issn | 1862-6351 1610-1642 |
language | eng |
recordid | cdi_proquest_journals_1949119850 |
source | Wiley Online Library All Journals |
subjects | Diodes garnet Lasers nonreciprocal phase shift optical isolator Optics Phase shift Photonics Wave propagation |
title | Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Garnet%20photonics%20toward%20developing%20laser%20diode%20integrated%20with%20optical%20isolator%20with%20Si%20guiding%20layer&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Yokoi,%20Hideki&rft.date=2011-03&rft.volume=8&rft.issue=3&rft.spage=1071&rft.epage=1074&rft.pages=1071-1074&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201000308&rft_dat=%3Cproquest_cross%3E1949119850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949119850&rft_id=info:pmid/&rfr_iscdi=true |