Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer

A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2011-03, Vol.8 (3), p.1071-1074
Hauptverfasser: Yokoi, Hideki, Igarashi, Shun, Uchiumi, Yuki, Tani, Kazuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1074
container_issue 3
container_start_page 1071
container_title Physica status solidi. C
container_volume 8
creator Yokoi, Hideki
Igarashi, Shun
Uchiumi, Yuki
Tani, Kazuya
description A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201000308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1949119850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949119850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3108-ddbca512658aab607b7cf576d05e0a2cb5e3b53683c7fcc125aa0b38b43c08ef3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4soqNOr54DnzpemSbujDp2yocIUjyFNXme0NjXJnPvvrVTEm6f34_F978EvSU4ojClAdtaFoMcZ9BkYlDvJARUUUirybLfPpchSwTjdTw5DeOkRDlQcJDhTvsVIumcXXWt1INFtlDfE4Ac2rrPtijQqoCfGOoPEthFXXkU0ZGPjM3FdtFo1xAbXqOj8sF1aslpbM8hb9EfJXq2agMc_c5Q8Xl0-TK_Txd3sZnq-SDWjUKbGVFpxmgleKlUJKKpC17wQBjiCynTFkVWciZLpotaaZlwpqFhZ5UxDiTUbJafD3c679zWGKF_c2rf9S0kn-YTSScmhp8YDpb0LwWMtO2_flN9KCvK7Svldpfytshcmg7CxDW7_oeX9cjn966aDa0PEz19X-VcpClZw-XQ7kyDm8_kFz2XBvgDPV4kq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949119850</pqid></control><display><type>article</type><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><source>Wiley Online Library All Journals</source><creator>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</creator><creatorcontrib>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</creatorcontrib><description>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201000308</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Diodes ; garnet ; Lasers ; nonreciprocal phase shift ; optical isolator ; Optics ; Phase shift ; Photonics ; Wave propagation</subject><ispartof>Physica status solidi. C, 2011-03, Vol.8 (3), p.1071-1074</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201000308$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201000308$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yokoi, Hideki</creatorcontrib><creatorcontrib>Igarashi, Shun</creatorcontrib><creatorcontrib>Uchiumi, Yuki</creatorcontrib><creatorcontrib>Tani, Kazuya</creatorcontrib><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi (c)</addtitle><description>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Diodes</subject><subject>garnet</subject><subject>Lasers</subject><subject>nonreciprocal phase shift</subject><subject>optical isolator</subject><subject>Optics</subject><subject>Phase shift</subject><subject>Photonics</subject><subject>Wave propagation</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4soqNOr54DnzpemSbujDp2yocIUjyFNXme0NjXJnPvvrVTEm6f34_F978EvSU4ojClAdtaFoMcZ9BkYlDvJARUUUirybLfPpchSwTjdTw5DeOkRDlQcJDhTvsVIumcXXWt1INFtlDfE4Ac2rrPtijQqoCfGOoPEthFXXkU0ZGPjM3FdtFo1xAbXqOj8sF1aslpbM8hb9EfJXq2agMc_c5Q8Xl0-TK_Txd3sZnq-SDWjUKbGVFpxmgleKlUJKKpC17wQBjiCynTFkVWciZLpotaaZlwpqFhZ5UxDiTUbJafD3c679zWGKF_c2rf9S0kn-YTSScmhp8YDpb0LwWMtO2_flN9KCvK7Svldpfytshcmg7CxDW7_oeX9cjn966aDa0PEz19X-VcpClZw-XQ7kyDm8_kFz2XBvgDPV4kq</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Yokoi, Hideki</creator><creator>Igarashi, Shun</creator><creator>Uchiumi, Yuki</creator><creator>Tani, Kazuya</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201103</creationdate><title>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</title><author>Yokoi, Hideki ; Igarashi, Shun ; Uchiumi, Yuki ; Tani, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3108-ddbca512658aab607b7cf576d05e0a2cb5e3b53683c7fcc125aa0b38b43c08ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Diodes</topic><topic>garnet</topic><topic>Lasers</topic><topic>nonreciprocal phase shift</topic><topic>optical isolator</topic><topic>Optics</topic><topic>Phase shift</topic><topic>Photonics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoi, Hideki</creatorcontrib><creatorcontrib>Igarashi, Shun</creatorcontrib><creatorcontrib>Uchiumi, Yuki</creatorcontrib><creatorcontrib>Tani, Kazuya</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoi, Hideki</au><au>Igarashi, Shun</au><au>Uchiumi, Yuki</au><au>Tani, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi (c)</addtitle><date>2011-03</date><risdate>2011</risdate><volume>8</volume><issue>3</issue><spage>1071</spage><epage>1074</epage><pages>1071-1074</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>A nonreciprocal phase shift occurs in TM modes that travel in magneto‐optic waveguides in which magnetization is aligned transverse to the light propagation direction in the film plane. The large nonreciprocal phase shift is obtained when a magneto‐optic waveguide comprises a guiding layer with a high‐refractive‐index material. A magneto‐optic waveguide with a Si guiding layer is obtained by depositing the Si layer on a magnetic garnet layer. An optical isolator employing a nonreciprocal phase shift is described which has the magneto‐optic waveguide with the Si guiding layer. A laser diode integrated with the optical isolator can be developed by connecting the laser diode on the Si layer in the magneto‐optic waveguide, which is a concept of garnet photonics (© 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201000308</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2011-03, Vol.8 (3), p.1071-1074
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_journals_1949119850
source Wiley Online Library All Journals
subjects Diodes
garnet
Lasers
nonreciprocal phase shift
optical isolator
Optics
Phase shift
Photonics
Wave propagation
title Garnet photonics toward developing laser diode integrated with optical isolator with Si guiding layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Garnet%20photonics%20toward%20developing%20laser%20diode%20integrated%20with%20optical%20isolator%20with%20Si%20guiding%20layer&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Yokoi,%20Hideki&rft.date=2011-03&rft.volume=8&rft.issue=3&rft.spage=1071&rft.epage=1074&rft.pages=1071-1074&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201000308&rft_dat=%3Cproquest_cross%3E1949119850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949119850&rft_id=info:pmid/&rfr_iscdi=true