Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching
This paper proposes an estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes. The estimation unfolds in two steps, with a least-squares method for a subset of parameters in the first stage, and a constrained maximum likelihood for the remaining diffusion and Lévy distribution parameter...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2017-08, Vol.255 (1-2), p.169-197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 1-2 |
container_start_page | 169 |
container_title | Annals of operations research |
container_volume | 255 |
creator | Chevallier, Julien Goutte, Stéphane |
description | This paper proposes an estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes. The estimation unfolds in two steps, with a least-squares method for a subset of parameters in the first stage, and a constrained maximum likelihood for the remaining diffusion and Lévy distribution parameters. We develop this estimation procedure to demonstrate that the class of mean-reverting Lévy jump processes provides a better fit of the electricity and
CO
2
(carbon) market prices. In particular, we describe the dynamics of the fuel-switching price (from coal to gas) when taking into account carbon costs. Several stochastic processes are considered to model the fuel-switching price: (1) the Brownian motion, and (2) Poisson and a panel of Lévy jump processes. The results unambiguously point out the need to resort to jump modeling techniques to model satisfactorily the fuel-switching price. The Gaussianity assumption is also clearly rejected in favor of jump models, especially for pure-jump processes such as Lévy processes. |
doi_str_mv | 10.1007/s10479-015-1967-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1949055282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949055282</sourcerecordid><originalsourceid>FETCH-LOGICAL-p715-d64917980ed296e9c07f8a44a25556ed8143983254f25c3f3866d19d80e8ee223</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqVwAHaWWBv8m9jsUFV-pErdlLUV4gl1SZ0Qp0XsuAOn4BzchJPgKCxYzWLee_PmQ-ic0UtGaX4VGZW5IZQpwkyWE3WAJkzlnBgh9CGaUK4kUULQY3QS44ZSyphWE1TPY--3Re-bgJsKL76_9u_EdX4PAS-7EHvw4efj83FdQ3iC8gW3XVNCjBCvcdG2tS9Hb9_gbeOg9uF5yJktOS6Cw9UOahLffF-u0-YUHVVFHeHsb07R6na-mt2TxfLuYXazIG2e-rtMGpYbTcFxk4EpaV7pQsqCK6UycJpJYbRID1VclaISOsscMy4ZNADnYoouxtjU9XUHsbebZteFdNEyIw1ViutBxUdVbLvUDbp_KmoHqHaEahNUO0C1SvwCeqhruA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949055282</pqid></control><display><type>article</type><title>Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Chevallier, Julien ; Goutte, Stéphane</creator><creatorcontrib>Chevallier, Julien ; Goutte, Stéphane</creatorcontrib><description>This paper proposes an estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes. The estimation unfolds in two steps, with a least-squares method for a subset of parameters in the first stage, and a constrained maximum likelihood for the remaining diffusion and Lévy distribution parameters. We develop this estimation procedure to demonstrate that the class of mean-reverting Lévy jump processes provides a better fit of the electricity and
CO
2
(carbon) market prices. In particular, we describe the dynamics of the fuel-switching price (from coal to gas) when taking into account carbon costs. Several stochastic processes are considered to model the fuel-switching price: (1) the Brownian motion, and (2) Poisson and a panel of Lévy jump processes. The results unambiguously point out the need to resort to jump modeling techniques to model satisfactorily the fuel-switching price. The Gaussianity assumption is also clearly rejected in favor of jump models, especially for pure-jump processes such as Lévy processes.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-015-1967-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brownian motion ; Business and Management ; Carbon dioxide ; Combinatorics ; Electricity pricing ; Estimating techniques ; Fuels ; Mathematical models ; Modelling ; Operations research ; Operations Research/Decision Theory ; Parameter estimation ; Stochastic processes ; Switching ; Theory of Computation</subject><ispartof>Annals of operations research, 2017-08, Vol.255 (1-2), p.169-197</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Annals of Operations Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p715-d64917980ed296e9c07f8a44a25556ed8143983254f25c3f3866d19d80e8ee223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-015-1967-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-015-1967-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chevallier, Julien</creatorcontrib><creatorcontrib>Goutte, Stéphane</creatorcontrib><title>Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>This paper proposes an estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes. The estimation unfolds in two steps, with a least-squares method for a subset of parameters in the first stage, and a constrained maximum likelihood for the remaining diffusion and Lévy distribution parameters. We develop this estimation procedure to demonstrate that the class of mean-reverting Lévy jump processes provides a better fit of the electricity and
CO
2
(carbon) market prices. In particular, we describe the dynamics of the fuel-switching price (from coal to gas) when taking into account carbon costs. Several stochastic processes are considered to model the fuel-switching price: (1) the Brownian motion, and (2) Poisson and a panel of Lévy jump processes. The results unambiguously point out the need to resort to jump modeling techniques to model satisfactorily the fuel-switching price. The Gaussianity assumption is also clearly rejected in favor of jump models, especially for pure-jump processes such as Lévy processes.</description><subject>Brownian motion</subject><subject>Business and Management</subject><subject>Carbon dioxide</subject><subject>Combinatorics</subject><subject>Electricity pricing</subject><subject>Estimating techniques</subject><subject>Fuels</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Parameter estimation</subject><subject>Stochastic processes</subject><subject>Switching</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1OwzAQhS0EEqVwAHaWWBv8m9jsUFV-pErdlLUV4gl1SZ0Qp0XsuAOn4BzchJPgKCxYzWLee_PmQ-ic0UtGaX4VGZW5IZQpwkyWE3WAJkzlnBgh9CGaUK4kUULQY3QS44ZSyphWE1TPY--3Re-bgJsKL76_9u_EdX4PAS-7EHvw4efj83FdQ3iC8gW3XVNCjBCvcdG2tS9Hb9_gbeOg9uF5yJktOS6Cw9UOahLffF-u0-YUHVVFHeHsb07R6na-mt2TxfLuYXazIG2e-rtMGpYbTcFxk4EpaV7pQsqCK6UycJpJYbRID1VclaISOsscMy4ZNADnYoouxtjU9XUHsbebZteFdNEyIw1ViutBxUdVbLvUDbp_KmoHqHaEahNUO0C1SvwCeqhruA</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Chevallier, Julien</creator><creator>Goutte, Stéphane</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching</title><author>Chevallier, Julien ; Goutte, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p715-d64917980ed296e9c07f8a44a25556ed8143983254f25c3f3866d19d80e8ee223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brownian motion</topic><topic>Business and Management</topic><topic>Carbon dioxide</topic><topic>Combinatorics</topic><topic>Electricity pricing</topic><topic>Estimating techniques</topic><topic>Fuels</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Parameter estimation</topic><topic>Stochastic processes</topic><topic>Switching</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevallier, Julien</creatorcontrib><creatorcontrib>Goutte, Stéphane</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevallier, Julien</au><au>Goutte, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>255</volume><issue>1-2</issue><spage>169</spage><epage>197</epage><pages>169-197</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>This paper proposes an estimation methodology for Lévy-driven Ornstein–Uhlenbeck processes. The estimation unfolds in two steps, with a least-squares method for a subset of parameters in the first stage, and a constrained maximum likelihood for the remaining diffusion and Lévy distribution parameters. We develop this estimation procedure to demonstrate that the class of mean-reverting Lévy jump processes provides a better fit of the electricity and
CO
2
(carbon) market prices. In particular, we describe the dynamics of the fuel-switching price (from coal to gas) when taking into account carbon costs. Several stochastic processes are considered to model the fuel-switching price: (1) the Brownian motion, and (2) Poisson and a panel of Lévy jump processes. The results unambiguously point out the need to resort to jump modeling techniques to model satisfactorily the fuel-switching price. The Gaussianity assumption is also clearly rejected in favor of jump models, especially for pure-jump processes such as Lévy processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-015-1967-5</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2017-08, Vol.255 (1-2), p.169-197 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_1949055282 |
source | Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete |
subjects | Brownian motion Business and Management Carbon dioxide Combinatorics Electricity pricing Estimating techniques Fuels Mathematical models Modelling Operations research Operations Research/Decision Theory Parameter estimation Stochastic processes Switching Theory of Computation |
title | Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of CO2 and fuel-switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20L%C3%A9vy-driven%20Ornstein%E2%80%93Uhlenbeck%20processes:%20application%20to%20modeling%20of%20CO2%20and%20fuel-switching&rft.jtitle=Annals%20of%20operations%20research&rft.au=Chevallier,%20Julien&rft.date=2017-08-01&rft.volume=255&rft.issue=1-2&rft.spage=169&rft.epage=197&rft.pages=169-197&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-015-1967-5&rft_dat=%3Cproquest_sprin%3E1949055282%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949055282&rft_id=info:pmid/&rfr_iscdi=true |