Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology
The effects of glycerol monosterate (GMS) and high-pressure butane on the phase-separation and crystallization of the hard segment (HS) of thermoplastic polyurethane (TPU) were investigated. Small and wide angle x-ray diffraction, polarized optical microscopy and atomic force microscopy were used to...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2017-03, Vol.112, p.208-218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 208 |
container_title | Polymer (Guilford) |
container_volume | 112 |
creator | Hossieny, N. Shaayegan, V. Ameli, A. Saniei, M. Park, C.B. |
description | The effects of glycerol monosterate (GMS) and high-pressure butane on the phase-separation and crystallization of the hard segment (HS) of thermoplastic polyurethane (TPU) were investigated. Small and wide angle x-ray diffraction, polarized optical microscopy and atomic force microscopy were used to characterize the crystalline morphology of TPU under various conditions. Overall, 60% higher HS crystallinity was observed in TPU-GMS samples annealed with butane compared to the neat-TPU samples. The toughness and Young Modulus in the TPU-GMS samples were increased due to the higher HS crystallinity compared to the neat-TPU samples. The HS crystallites were effectively utilized as heterogeneous bubble nucleation sites to induce microcellular morphologies in the TPU microstructure. Compared to neat-TPU, the TPU-GMS microcellular morphology showed higher cell density over the wide saturation temperature of 150–170 °C due to the increased HS phase separation and crystallization mechanism in the presence of GMS and dissolved butane.
[Display omitted]
•Hard segment (HS) crystallized faster in TPU with presence of GMS.•Plasticizing butane significantly induced a large number of HS crystals in TPU.•HS crystallization reduced activation energy for bubble nucleation in TPU microstructure.•Microcellular TPU foams was achieved with butane due to HS crystallization. |
doi_str_mv | 10.1016/j.polymer.2017.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948452909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386117301386</els_id><sourcerecordid>1948452909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-caef802efb586fa5c343c5de43c07f6b1323a8de3095fca52d6693da34d0076a3</originalsourceid><addsrcrecordid>eNqFUcuK3DAQFMsuZHY3nxAQ5GxHDz9PIQx5wUIuyVn0SO2xBtnySnLA-cB8V-Sdvecigaq6qlpFyDvOSs548-FSLt5tE4ZSMN6WTJSM1zfkwLtWFkL0_JYcGJOikF3D35D7GC-MMVGL6kD-HkcIoBMG-weS9TP1A81Ppoh4nnBOVIctJnDOzkiXESLujDRimPziICar6W6_BkwjZI6dd5QuASPO-oV9WtOOwGzo2W0ag3d08rOP2RbSFbApUjstOQrNISbUWcxqcFnILxjS9sKarA5eo3Org5A1wjJ658_bI7kbwEV8-3o_kF9fPv88fiuefnz9fvz0VGgp21RowKFjAodT3TUD1FpWUtcG88naoTlxKSR0BiXr60FDLUzT9NKArAxjbQPygby_6uZUzyvGpC5-DXO2VLyvuqoWPeszq76yctgYAw5qCXaCsCnO1F6ZuqjXytRemWJC5cry3MfrHOYVftuMRm33TzQ2oE7KePsfhX-VMKnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948452909</pqid></control><display><type>article</type><title>Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology</title><source>Elsevier ScienceDirect Journals</source><creator>Hossieny, N. ; Shaayegan, V. ; Ameli, A. ; Saniei, M. ; Park, C.B.</creator><creatorcontrib>Hossieny, N. ; Shaayegan, V. ; Ameli, A. ; Saniei, M. ; Park, C.B.</creatorcontrib><description>The effects of glycerol monosterate (GMS) and high-pressure butane on the phase-separation and crystallization of the hard segment (HS) of thermoplastic polyurethane (TPU) were investigated. Small and wide angle x-ray diffraction, polarized optical microscopy and atomic force microscopy were used to characterize the crystalline morphology of TPU under various conditions. Overall, 60% higher HS crystallinity was observed in TPU-GMS samples annealed with butane compared to the neat-TPU samples. The toughness and Young Modulus in the TPU-GMS samples were increased due to the higher HS crystallinity compared to the neat-TPU samples. The HS crystallites were effectively utilized as heterogeneous bubble nucleation sites to induce microcellular morphologies in the TPU microstructure. Compared to neat-TPU, the TPU-GMS microcellular morphology showed higher cell density over the wide saturation temperature of 150–170 °C due to the increased HS phase separation and crystallization mechanism in the presence of GMS and dissolved butane.
[Display omitted]
•Hard segment (HS) crystallized faster in TPU with presence of GMS.•Plasticizing butane significantly induced a large number of HS crystals in TPU.•HS crystallization reduced activation energy for bubble nucleation in TPU microstructure.•Microcellular TPU foams was achieved with butane due to HS crystallization.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2017.02.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Butane ; Cell density ; Crystal structure ; Crystallinity ; Crystallites ; Crystallization ; Crystals ; Cytology ; Glycerol ; Hard segment ; Heterogeneous nucleation ; Mechanical properties ; Microscopy ; Microstructure ; Modulus of elasticity ; Morphology ; Optical microscopy ; Phase separation ; Polyurethane ; Polyurethane resins ; Saturation ; Studies ; Thermoplastic polyurethane ; Thermoplastics ; Urethane thermoplastic elastomers ; X-ray diffraction</subject><ispartof>Polymer (Guilford), 2017-03, Vol.112, p.208-218</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 10, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-caef802efb586fa5c343c5de43c07f6b1323a8de3095fca52d6693da34d0076a3</citedby><cites>FETCH-LOGICAL-c337t-caef802efb586fa5c343c5de43c07f6b1323a8de3095fca52d6693da34d0076a3</cites><orcidid>0000-0001-8495-5696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386117301386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Hossieny, N.</creatorcontrib><creatorcontrib>Shaayegan, V.</creatorcontrib><creatorcontrib>Ameli, A.</creatorcontrib><creatorcontrib>Saniei, M.</creatorcontrib><creatorcontrib>Park, C.B.</creatorcontrib><title>Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology</title><title>Polymer (Guilford)</title><description>The effects of glycerol monosterate (GMS) and high-pressure butane on the phase-separation and crystallization of the hard segment (HS) of thermoplastic polyurethane (TPU) were investigated. Small and wide angle x-ray diffraction, polarized optical microscopy and atomic force microscopy were used to characterize the crystalline morphology of TPU under various conditions. Overall, 60% higher HS crystallinity was observed in TPU-GMS samples annealed with butane compared to the neat-TPU samples. The toughness and Young Modulus in the TPU-GMS samples were increased due to the higher HS crystallinity compared to the neat-TPU samples. The HS crystallites were effectively utilized as heterogeneous bubble nucleation sites to induce microcellular morphologies in the TPU microstructure. Compared to neat-TPU, the TPU-GMS microcellular morphology showed higher cell density over the wide saturation temperature of 150–170 °C due to the increased HS phase separation and crystallization mechanism in the presence of GMS and dissolved butane.
[Display omitted]
•Hard segment (HS) crystallized faster in TPU with presence of GMS.•Plasticizing butane significantly induced a large number of HS crystals in TPU.•HS crystallization reduced activation energy for bubble nucleation in TPU microstructure.•Microcellular TPU foams was achieved with butane due to HS crystallization.</description><subject>Atomic force microscopy</subject><subject>Butane</subject><subject>Cell density</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Cytology</subject><subject>Glycerol</subject><subject>Hard segment</subject><subject>Heterogeneous nucleation</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Optical microscopy</subject><subject>Phase separation</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Saturation</subject><subject>Studies</subject><subject>Thermoplastic polyurethane</subject><subject>Thermoplastics</subject><subject>Urethane thermoplastic elastomers</subject><subject>X-ray diffraction</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUcuK3DAQFMsuZHY3nxAQ5GxHDz9PIQx5wUIuyVn0SO2xBtnySnLA-cB8V-Sdvecigaq6qlpFyDvOSs548-FSLt5tE4ZSMN6WTJSM1zfkwLtWFkL0_JYcGJOikF3D35D7GC-MMVGL6kD-HkcIoBMG-weS9TP1A81Ppoh4nnBOVIctJnDOzkiXESLujDRimPziICar6W6_BkwjZI6dd5QuASPO-oV9WtOOwGzo2W0ag3d08rOP2RbSFbApUjstOQrNISbUWcxqcFnILxjS9sKarA5eo3Org5A1wjJ658_bI7kbwEV8-3o_kF9fPv88fiuefnz9fvz0VGgp21RowKFjAodT3TUD1FpWUtcG88naoTlxKSR0BiXr60FDLUzT9NKArAxjbQPygby_6uZUzyvGpC5-DXO2VLyvuqoWPeszq76yctgYAw5qCXaCsCnO1F6ZuqjXytRemWJC5cry3MfrHOYVftuMRm33TzQ2oE7KePsfhX-VMKnm</recordid><startdate>20170310</startdate><enddate>20170310</enddate><creator>Hossieny, N.</creator><creator>Shaayegan, V.</creator><creator>Ameli, A.</creator><creator>Saniei, M.</creator><creator>Park, C.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-8495-5696</orcidid></search><sort><creationdate>20170310</creationdate><title>Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology</title><author>Hossieny, N. ; Shaayegan, V. ; Ameli, A. ; Saniei, M. ; Park, C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-caef802efb586fa5c343c5de43c07f6b1323a8de3095fca52d6693da34d0076a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy</topic><topic>Butane</topic><topic>Cell density</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Cytology</topic><topic>Glycerol</topic><topic>Hard segment</topic><topic>Heterogeneous nucleation</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Optical microscopy</topic><topic>Phase separation</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Saturation</topic><topic>Studies</topic><topic>Thermoplastic polyurethane</topic><topic>Thermoplastics</topic><topic>Urethane thermoplastic elastomers</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossieny, N.</creatorcontrib><creatorcontrib>Shaayegan, V.</creatorcontrib><creatorcontrib>Ameli, A.</creatorcontrib><creatorcontrib>Saniei, M.</creatorcontrib><creatorcontrib>Park, C.B.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossieny, N.</au><au>Shaayegan, V.</au><au>Ameli, A.</au><au>Saniei, M.</au><au>Park, C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology</atitle><jtitle>Polymer (Guilford)</jtitle><date>2017-03-10</date><risdate>2017</risdate><volume>112</volume><spage>208</spage><epage>218</epage><pages>208-218</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The effects of glycerol monosterate (GMS) and high-pressure butane on the phase-separation and crystallization of the hard segment (HS) of thermoplastic polyurethane (TPU) were investigated. Small and wide angle x-ray diffraction, polarized optical microscopy and atomic force microscopy were used to characterize the crystalline morphology of TPU under various conditions. Overall, 60% higher HS crystallinity was observed in TPU-GMS samples annealed with butane compared to the neat-TPU samples. The toughness and Young Modulus in the TPU-GMS samples were increased due to the higher HS crystallinity compared to the neat-TPU samples. The HS crystallites were effectively utilized as heterogeneous bubble nucleation sites to induce microcellular morphologies in the TPU microstructure. Compared to neat-TPU, the TPU-GMS microcellular morphology showed higher cell density over the wide saturation temperature of 150–170 °C due to the increased HS phase separation and crystallization mechanism in the presence of GMS and dissolved butane.
[Display omitted]
•Hard segment (HS) crystallized faster in TPU with presence of GMS.•Plasticizing butane significantly induced a large number of HS crystals in TPU.•HS crystallization reduced activation energy for bubble nucleation in TPU microstructure.•Microcellular TPU foams was achieved with butane due to HS crystallization.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2017.02.015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8495-5696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2017-03, Vol.112, p.208-218 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_1948452909 |
source | Elsevier ScienceDirect Journals |
subjects | Atomic force microscopy Butane Cell density Crystal structure Crystallinity Crystallites Crystallization Crystals Cytology Glycerol Hard segment Heterogeneous nucleation Mechanical properties Microscopy Microstructure Modulus of elasticity Morphology Optical microscopy Phase separation Polyurethane Polyurethane resins Saturation Studies Thermoplastic polyurethane Thermoplastics Urethane thermoplastic elastomers X-ray diffraction |
title | Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hard-segment%20crystalline%20phase%20of%20thermoplastic%20polyurethane%20in%20the%20presence%20of%20butane%20and%20glycerol%20monosterate%20and%20its%20impact%20on%20mechanical%20property%20and%20microcellular%20morphology&rft.jtitle=Polymer%20(Guilford)&rft.au=Hossieny,%20N.&rft.date=2017-03-10&rft.volume=112&rft.spage=208&rft.epage=218&rft.pages=208-218&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2017.02.015&rft_dat=%3Cproquest_cross%3E1948452909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948452909&rft_id=info:pmid/&rft_els_id=S0032386117301386&rfr_iscdi=true |