Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields
Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2017-09, Vol.31 (7), p.1853-1870 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1870 |
---|---|
container_issue | 7 |
container_start_page | 1853 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 31 |
creator | Petrakis, Manolis P. Hristopulos, Dionissios T. |
description | Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference. |
doi_str_mv | 10.1007/s00477-016-1361-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948057237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1948057237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</originalsourceid><addsrcrecordid>eNp1UMFOAyEQJUYTm9oP8EbiGYWFBfZoGq1NGr3ombALGMwurLCN9u-l2cZ48TSTmfdm3nsAXBN8SzAWdxljJgTChCNCOUH4DCwIoxzRqm7Of3uGL8EqZ98WTk2bhuAFGJ9jQKNOerBT8h3U45jitx_05GPI0MUEdfA5TimOB2jzdFpBH-D0FZHxgw25DHQPjXfOJhsmr9vewo3el2c6wKSDiQN03vYmX4ELp_tsV6e6BG-PD6_rJ7R72WzX9zvUUcInJAlru65uCadWSC2kaw2nxBrDCBNUVoxx1hZ_dbFlZeUkrVsmKkEdt1gaugQ3893i53NfhKuPuE9FZlakYRLXoqKioMiM6lLMOVmnxlQcpoMiWB2zVXO2qmSrjtkqXDjVzMkFG95t-nP5X9IPHC59uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948057237</pqid></control><display><type>article</type><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</creator><creatorcontrib>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</creatorcontrib><description>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1361-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Aquatic Pollution ; Aspect ratio ; Attitude (inclination) ; Background radiation ; Bayesian analysis ; Change detection ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Computer simulation ; Confidence intervals ; Earth and Environmental Science ; Earth Sciences ; Economic models ; Environment ; Fields (mathematics) ; Isotropy ; Math. Appl. in Environmental Science ; Mathematical models ; Maximum likelihood estimation ; Nonparametric statistics ; Normal distribution ; Original Paper ; Parameter estimation ; Physics ; Probability density functions ; Probability Theory and Stochastic Processes ; Radiation effects ; Spatial distribution ; Statistical analysis ; Statistics ; Statistics for Engineering ; Theoretical analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1853-1870</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</citedby><cites>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</cites><orcidid>0000-0002-5189-5612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1361-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1361-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Petrakis, Manolis P.</creatorcontrib><creatorcontrib>Hristopulos, Dionissios T.</creatorcontrib><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</description><subject>Anisotropy</subject><subject>Aquatic Pollution</subject><subject>Aspect ratio</subject><subject>Attitude (inclination)</subject><subject>Background radiation</subject><subject>Bayesian analysis</subject><subject>Change detection</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic models</subject><subject>Environment</subject><subject>Fields (mathematics)</subject><subject>Isotropy</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Nonparametric statistics</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability density functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Radiation effects</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><subject>Theoretical analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMFOAyEQJUYTm9oP8EbiGYWFBfZoGq1NGr3ombALGMwurLCN9u-l2cZ48TSTmfdm3nsAXBN8SzAWdxljJgTChCNCOUH4DCwIoxzRqm7Of3uGL8EqZ98WTk2bhuAFGJ9jQKNOerBT8h3U45jitx_05GPI0MUEdfA5TimOB2jzdFpBH-D0FZHxgw25DHQPjXfOJhsmr9vewo3el2c6wKSDiQN03vYmX4ELp_tsV6e6BG-PD6_rJ7R72WzX9zvUUcInJAlru65uCadWSC2kaw2nxBrDCBNUVoxx1hZ_dbFlZeUkrVsmKkEdt1gaugQ3893i53NfhKuPuE9FZlakYRLXoqKioMiM6lLMOVmnxlQcpoMiWB2zVXO2qmSrjtkqXDjVzMkFG95t-nP5X9IPHC59uQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Petrakis, Manolis P.</creator><creator>Hristopulos, Dionissios T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5189-5612</orcidid></search><sort><creationdate>20170901</creationdate><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><author>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Aquatic Pollution</topic><topic>Aspect ratio</topic><topic>Attitude (inclination)</topic><topic>Background radiation</topic><topic>Bayesian analysis</topic><topic>Change detection</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic models</topic><topic>Environment</topic><topic>Fields (mathematics)</topic><topic>Isotropy</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Nonparametric statistics</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability density functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Radiation effects</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><topic>Theoretical analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrakis, Manolis P.</creatorcontrib><creatorcontrib>Hristopulos, Dionissios T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrakis, Manolis P.</au><au>Hristopulos, Dionissios T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1853</spage><epage>1870</epage><pages>1853-1870</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1361-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5189-5612</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1853-1870 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_1948057237 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Aquatic Pollution Aspect ratio Attitude (inclination) Background radiation Bayesian analysis Change detection Chemistry and Earth Sciences Computational Intelligence Computer Science Computer simulation Confidence intervals Earth and Environmental Science Earth Sciences Economic models Environment Fields (mathematics) Isotropy Math. Appl. in Environmental Science Mathematical models Maximum likelihood estimation Nonparametric statistics Normal distribution Original Paper Parameter estimation Physics Probability density functions Probability Theory and Stochastic Processes Radiation effects Spatial distribution Statistical analysis Statistics Statistics for Engineering Theoretical analysis Waste Water Technology Water Management Water Pollution Control |
title | Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-parametric%20approximations%20for%20anisotropy%20estimation%20in%20two-dimensional%20differentiable%20Gaussian%20random%20fields&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Petrakis,%20Manolis%20P.&rft.date=2017-09-01&rft.volume=31&rft.issue=7&rft.spage=1853&rft.epage=1870&rft.pages=1853-1870&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1361-0&rft_dat=%3Cproquest_cross%3E1948057237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948057237&rft_id=info:pmid/&rfr_iscdi=true |