Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields

Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2017-09, Vol.31 (7), p.1853-1870
Hauptverfasser: Petrakis, Manolis P., Hristopulos, Dionissios T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 7
container_start_page 1853
container_title Stochastic environmental research and risk assessment
container_volume 31
creator Petrakis, Manolis P.
Hristopulos, Dionissios T.
description Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.
doi_str_mv 10.1007/s00477-016-1361-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948057237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1948057237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</originalsourceid><addsrcrecordid>eNp1UMFOAyEQJUYTm9oP8EbiGYWFBfZoGq1NGr3ombALGMwurLCN9u-l2cZ48TSTmfdm3nsAXBN8SzAWdxljJgTChCNCOUH4DCwIoxzRqm7Of3uGL8EqZ98WTk2bhuAFGJ9jQKNOerBT8h3U45jitx_05GPI0MUEdfA5TimOB2jzdFpBH-D0FZHxgw25DHQPjXfOJhsmr9vewo3el2c6wKSDiQN03vYmX4ELp_tsV6e6BG-PD6_rJ7R72WzX9zvUUcInJAlru65uCadWSC2kaw2nxBrDCBNUVoxx1hZ_dbFlZeUkrVsmKkEdt1gaugQ3893i53NfhKuPuE9FZlakYRLXoqKioMiM6lLMOVmnxlQcpoMiWB2zVXO2qmSrjtkqXDjVzMkFG95t-nP5X9IPHC59uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948057237</pqid></control><display><type>article</type><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</creator><creatorcontrib>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</creatorcontrib><description>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1361-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Aquatic Pollution ; Aspect ratio ; Attitude (inclination) ; Background radiation ; Bayesian analysis ; Change detection ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Computer simulation ; Confidence intervals ; Earth and Environmental Science ; Earth Sciences ; Economic models ; Environment ; Fields (mathematics) ; Isotropy ; Math. Appl. in Environmental Science ; Mathematical models ; Maximum likelihood estimation ; Nonparametric statistics ; Normal distribution ; Original Paper ; Parameter estimation ; Physics ; Probability density functions ; Probability Theory and Stochastic Processes ; Radiation effects ; Spatial distribution ; Statistical analysis ; Statistics ; Statistics for Engineering ; Theoretical analysis ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1853-1870</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</citedby><cites>FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</cites><orcidid>0000-0002-5189-5612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1361-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1361-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Petrakis, Manolis P.</creatorcontrib><creatorcontrib>Hristopulos, Dionissios T.</creatorcontrib><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</description><subject>Anisotropy</subject><subject>Aquatic Pollution</subject><subject>Aspect ratio</subject><subject>Attitude (inclination)</subject><subject>Background radiation</subject><subject>Bayesian analysis</subject><subject>Change detection</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic models</subject><subject>Environment</subject><subject>Fields (mathematics)</subject><subject>Isotropy</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Nonparametric statistics</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability density functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Radiation effects</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><subject>Theoretical analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMFOAyEQJUYTm9oP8EbiGYWFBfZoGq1NGr3ombALGMwurLCN9u-l2cZ48TSTmfdm3nsAXBN8SzAWdxljJgTChCNCOUH4DCwIoxzRqm7Of3uGL8EqZ98WTk2bhuAFGJ9jQKNOerBT8h3U45jitx_05GPI0MUEdfA5TimOB2jzdFpBH-D0FZHxgw25DHQPjXfOJhsmr9vewo3el2c6wKSDiQN03vYmX4ELp_tsV6e6BG-PD6_rJ7R72WzX9zvUUcInJAlru65uCadWSC2kaw2nxBrDCBNUVoxx1hZ_dbFlZeUkrVsmKkEdt1gaugQ3893i53NfhKuPuE9FZlakYRLXoqKioMiM6lLMOVmnxlQcpoMiWB2zVXO2qmSrjtkqXDjVzMkFG95t-nP5X9IPHC59uQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Petrakis, Manolis P.</creator><creator>Hristopulos, Dionissios T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5189-5612</orcidid></search><sort><creationdate>20170901</creationdate><title>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</title><author>Petrakis, Manolis P. ; Hristopulos, Dionissios T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-814bcc5b163e78a78fbd631edd41473824464b3255240e82f835b47273f6e08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Aquatic Pollution</topic><topic>Aspect ratio</topic><topic>Attitude (inclination)</topic><topic>Background radiation</topic><topic>Bayesian analysis</topic><topic>Change detection</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic models</topic><topic>Environment</topic><topic>Fields (mathematics)</topic><topic>Isotropy</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Nonparametric statistics</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability density functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Radiation effects</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><topic>Theoretical analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrakis, Manolis P.</creatorcontrib><creatorcontrib>Hristopulos, Dionissios T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrakis, Manolis P.</au><au>Hristopulos, Dionissios T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1853</spage><epage>1870</epage><pages>1853-1870</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1361-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5189-5612</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1853-1870
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_1948057237
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Aquatic Pollution
Aspect ratio
Attitude (inclination)
Background radiation
Bayesian analysis
Change detection
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Computer simulation
Confidence intervals
Earth and Environmental Science
Earth Sciences
Economic models
Environment
Fields (mathematics)
Isotropy
Math. Appl. in Environmental Science
Mathematical models
Maximum likelihood estimation
Nonparametric statistics
Normal distribution
Original Paper
Parameter estimation
Physics
Probability density functions
Probability Theory and Stochastic Processes
Radiation effects
Spatial distribution
Statistical analysis
Statistics
Statistics for Engineering
Theoretical analysis
Waste Water Technology
Water Management
Water Pollution Control
title Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-parametric%20approximations%20for%20anisotropy%20estimation%20in%20two-dimensional%20differentiable%20Gaussian%20random%20fields&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Petrakis,%20Manolis%20P.&rft.date=2017-09-01&rft.volume=31&rft.issue=7&rft.spage=1853&rft.epage=1870&rft.pages=1853-1870&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1361-0&rft_dat=%3Cproquest_cross%3E1948057237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948057237&rft_id=info:pmid/&rfr_iscdi=true