Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models
In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2017-09, Vol.31 (7), p.1747-1758 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1758 |
---|---|
container_issue | 7 |
container_start_page | 1747 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 31 |
creator | Sahu, Netrananda Robertson, Andrew W. Boer, Rizaldi Behera, Swadhin DeWitt, David G. Takara, Kaoru Kumar, Manish Singh, R. B. |
description | In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season. |
doi_str_mv | 10.1007/s00477-016-1297-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948056986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1948056986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOOZ-gHcBb1dN0nw0lzL8GAwU2X1I2mRG2mbmdIr_3oyKeONVDuF9Xs55iuKS4GuCsbwBjJmUJSaiJFTJkp0UM8IqUVaUq9PfmeHzYgEQbGZ4pRTBs2L_nKI1NnQBxtAgcAbiYDoEY3Km9138RD4m1xgYAUWPxleHVmE06dCjl_Dh0hKthzYODoJZImvAtSgOaOcGl3JNE1Jz6MwY8l8fW9fBRXHmTQdu8fPOi-393Xb1WG6eHtar203ZVDUdSy-aSnLuLW-lUzQv74S1mHnOMVXKMEkpq4mQ3pK24kJwLBWzlLaqZcxX8-Jqqt2n-H5wMOq3eEj5MtBEsRpzoWqRU2RKNSkCJOf1PoXepC9NsD6q1ZNandXqo1rNMkMnBnJ22Ln0p_lf6BsJjHwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948056986</pqid></control><display><type>article</type><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</creator><creatorcontrib>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</creatorcontrib><description>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1297-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric models ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Environment ; General circulation models ; Math. Appl. in Environmental Science ; Original Paper ; Physics ; Precipitation ; Probability Theory and Stochastic Processes ; Regression models ; River flow ; Rivers ; Statistical analysis ; Statistics for Engineering ; Stream discharge ; Stream flow ; Streamflow forecasting ; Waste Water Technology ; Water circulation ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1747-1758</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</citedby><cites>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</cites><orcidid>0000-0001-8505-7185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1297-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1297-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sahu, Netrananda</creatorcontrib><creatorcontrib>Robertson, Andrew W.</creatorcontrib><creatorcontrib>Boer, Rizaldi</creatorcontrib><creatorcontrib>Behera, Swadhin</creatorcontrib><creatorcontrib>DeWitt, David G.</creatorcontrib><creatorcontrib>Takara, Kaoru</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Singh, R. B.</creatorcontrib><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</description><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>General circulation models</subject><subject>Math. Appl. in Environmental Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression models</subject><subject>River flow</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Waste Water Technology</subject><subject>Water circulation</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhosoOOZ-gHcBb1dN0nw0lzL8GAwU2X1I2mRG2mbmdIr_3oyKeONVDuF9Xs55iuKS4GuCsbwBjJmUJSaiJFTJkp0UM8IqUVaUq9PfmeHzYgEQbGZ4pRTBs2L_nKI1NnQBxtAgcAbiYDoEY3Km9138RD4m1xgYAUWPxleHVmE06dCjl_Dh0hKthzYODoJZImvAtSgOaOcGl3JNE1Jz6MwY8l8fW9fBRXHmTQdu8fPOi-393Xb1WG6eHtar203ZVDUdSy-aSnLuLW-lUzQv74S1mHnOMVXKMEkpq4mQ3pK24kJwLBWzlLaqZcxX8-Jqqt2n-H5wMOq3eEj5MtBEsRpzoWqRU2RKNSkCJOf1PoXepC9NsD6q1ZNandXqo1rNMkMnBnJ22Ln0p_lf6BsJjHwo</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Sahu, Netrananda</creator><creator>Robertson, Andrew W.</creator><creator>Boer, Rizaldi</creator><creator>Behera, Swadhin</creator><creator>DeWitt, David G.</creator><creator>Takara, Kaoru</creator><creator>Kumar, Manish</creator><creator>Singh, R. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8505-7185</orcidid></search><sort><creationdate>20170901</creationdate><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><author>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>General circulation models</topic><topic>Math. Appl. in Environmental Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression models</topic><topic>River flow</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Waste Water Technology</topic><topic>Water circulation</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Netrananda</creatorcontrib><creatorcontrib>Robertson, Andrew W.</creatorcontrib><creatorcontrib>Boer, Rizaldi</creatorcontrib><creatorcontrib>Behera, Swadhin</creatorcontrib><creatorcontrib>DeWitt, David G.</creatorcontrib><creatorcontrib>Takara, Kaoru</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Singh, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Netrananda</au><au>Robertson, Andrew W.</au><au>Boer, Rizaldi</au><au>Behera, Swadhin</au><au>DeWitt, David G.</au><au>Takara, Kaoru</au><au>Kumar, Manish</au><au>Singh, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1747</spage><epage>1758</epage><pages>1747-1758</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1297-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8505-7185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1747-1758 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_1948056986 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Atmospheric models Chemistry and Earth Sciences Computational Intelligence Computer Science Earth and Environmental Science Earth Sciences Environment General circulation models Math. Appl. in Environmental Science Original Paper Physics Precipitation Probability Theory and Stochastic Processes Regression models River flow Rivers Statistical analysis Statistics for Engineering Stream discharge Stream flow Streamflow forecasting Waste Water Technology Water circulation Water Management Water Pollution Control |
title | Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20seasonal%20streamflow%20forecasts%20of%20the%20Citarum%20River,%20Indonesia,%20based%20on%20general%20circulation%20models&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Sahu,%20Netrananda&rft.date=2017-09-01&rft.volume=31&rft.issue=7&rft.spage=1747&rft.epage=1758&rft.pages=1747-1758&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1297-4&rft_dat=%3Cproquest_cross%3E1948056986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948056986&rft_id=info:pmid/&rfr_iscdi=true |