Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models

In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2017-09, Vol.31 (7), p.1747-1758
Hauptverfasser: Sahu, Netrananda, Robertson, Andrew W., Boer, Rizaldi, Behera, Swadhin, DeWitt, David G., Takara, Kaoru, Kumar, Manish, Singh, R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1758
container_issue 7
container_start_page 1747
container_title Stochastic environmental research and risk assessment
container_volume 31
creator Sahu, Netrananda
Robertson, Andrew W.
Boer, Rizaldi
Behera, Swadhin
DeWitt, David G.
Takara, Kaoru
Kumar, Manish
Singh, R. B.
description In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.
doi_str_mv 10.1007/s00477-016-1297-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948056986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1948056986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOOZ-gHcBb1dN0nw0lzL8GAwU2X1I2mRG2mbmdIr_3oyKeONVDuF9Xs55iuKS4GuCsbwBjJmUJSaiJFTJkp0UM8IqUVaUq9PfmeHzYgEQbGZ4pRTBs2L_nKI1NnQBxtAgcAbiYDoEY3Km9138RD4m1xgYAUWPxleHVmE06dCjl_Dh0hKthzYODoJZImvAtSgOaOcGl3JNE1Jz6MwY8l8fW9fBRXHmTQdu8fPOi-393Xb1WG6eHtar203ZVDUdSy-aSnLuLW-lUzQv74S1mHnOMVXKMEkpq4mQ3pK24kJwLBWzlLaqZcxX8-Jqqt2n-H5wMOq3eEj5MtBEsRpzoWqRU2RKNSkCJOf1PoXepC9NsD6q1ZNandXqo1rNMkMnBnJ22Ln0p_lf6BsJjHwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948056986</pqid></control><display><type>article</type><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</creator><creatorcontrib>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</creatorcontrib><description>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1297-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric models ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Environment ; General circulation models ; Math. Appl. in Environmental Science ; Original Paper ; Physics ; Precipitation ; Probability Theory and Stochastic Processes ; Regression models ; River flow ; Rivers ; Statistical analysis ; Statistics for Engineering ; Stream discharge ; Stream flow ; Streamflow forecasting ; Waste Water Technology ; Water circulation ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1747-1758</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</citedby><cites>FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</cites><orcidid>0000-0001-8505-7185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1297-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1297-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sahu, Netrananda</creatorcontrib><creatorcontrib>Robertson, Andrew W.</creatorcontrib><creatorcontrib>Boer, Rizaldi</creatorcontrib><creatorcontrib>Behera, Swadhin</creatorcontrib><creatorcontrib>DeWitt, David G.</creatorcontrib><creatorcontrib>Takara, Kaoru</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Singh, R. B.</creatorcontrib><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</description><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>General circulation models</subject><subject>Math. Appl. in Environmental Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression models</subject><subject>River flow</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Waste Water Technology</subject><subject>Water circulation</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhosoOOZ-gHcBb1dN0nw0lzL8GAwU2X1I2mRG2mbmdIr_3oyKeONVDuF9Xs55iuKS4GuCsbwBjJmUJSaiJFTJkp0UM8IqUVaUq9PfmeHzYgEQbGZ4pRTBs2L_nKI1NnQBxtAgcAbiYDoEY3Km9138RD4m1xgYAUWPxleHVmE06dCjl_Dh0hKthzYODoJZImvAtSgOaOcGl3JNE1Jz6MwY8l8fW9fBRXHmTQdu8fPOi-393Xb1WG6eHtar203ZVDUdSy-aSnLuLW-lUzQv74S1mHnOMVXKMEkpq4mQ3pK24kJwLBWzlLaqZcxX8-Jqqt2n-H5wMOq3eEj5MtBEsRpzoWqRU2RKNSkCJOf1PoXepC9NsD6q1ZNandXqo1rNMkMnBnJ22Ln0p_lf6BsJjHwo</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Sahu, Netrananda</creator><creator>Robertson, Andrew W.</creator><creator>Boer, Rizaldi</creator><creator>Behera, Swadhin</creator><creator>DeWitt, David G.</creator><creator>Takara, Kaoru</creator><creator>Kumar, Manish</creator><creator>Singh, R. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8505-7185</orcidid></search><sort><creationdate>20170901</creationdate><title>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</title><author>Sahu, Netrananda ; Robertson, Andrew W. ; Boer, Rizaldi ; Behera, Swadhin ; DeWitt, David G. ; Takara, Kaoru ; Kumar, Manish ; Singh, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f6c3755fb5d7e92324e6bb04f550299a472248167fb1d356650794b22d9d44f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>General circulation models</topic><topic>Math. Appl. in Environmental Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression models</topic><topic>River flow</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Waste Water Technology</topic><topic>Water circulation</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Netrananda</creatorcontrib><creatorcontrib>Robertson, Andrew W.</creatorcontrib><creatorcontrib>Boer, Rizaldi</creatorcontrib><creatorcontrib>Behera, Swadhin</creatorcontrib><creatorcontrib>DeWitt, David G.</creatorcontrib><creatorcontrib>Takara, Kaoru</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Singh, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Netrananda</au><au>Robertson, Andrew W.</au><au>Boer, Rizaldi</au><au>Behera, Swadhin</au><au>DeWitt, David G.</au><au>Takara, Kaoru</au><au>Kumar, Manish</au><au>Singh, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1747</spage><epage>1758</epage><pages>1747-1758</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1297-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8505-7185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1747-1758
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_1948056986
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Atmospheric models
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Earth and Environmental Science
Earth Sciences
Environment
General circulation models
Math. Appl. in Environmental Science
Original Paper
Physics
Precipitation
Probability Theory and Stochastic Processes
Regression models
River flow
Rivers
Statistical analysis
Statistics for Engineering
Stream discharge
Stream flow
Streamflow forecasting
Waste Water Technology
Water circulation
Water Management
Water Pollution Control
title Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20seasonal%20streamflow%20forecasts%20of%20the%20Citarum%20River,%20Indonesia,%20based%20on%20general%20circulation%20models&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Sahu,%20Netrananda&rft.date=2017-09-01&rft.volume=31&rft.issue=7&rft.spage=1747&rft.epage=1758&rft.pages=1747-1758&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1297-4&rft_dat=%3Cproquest_cross%3E1948056986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948056986&rft_id=info:pmid/&rfr_iscdi=true