Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates
A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regre...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2017-09, Vol.31 (7), p.1727-1745 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1745 |
---|---|
container_issue | 7 |
container_start_page | 1727 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 31 |
creator | Rezaee, Hassan Marcotte, Denis |
description | A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regression classifier into as many probability fields as there are categories. The local category proportions are used and compared to the average category probabilities within the patch. The conditioning to HD is obtained using alternative training images and by imposing large relative weights to HD. The conditioning to soft data is obtained by measuring the probability–proportion patch distance. Both 2D and 3D cases are considered. Synthetic cases show that a stationary TI can generate non-stationary realizations reproducing the HD, keeping the texture indicated by the TI and following the trends identified in probability maps obtained from soft data. A real case study, the Mallik methane-hydrate field, shows perfect reproduction of HD while keeping a good reproduction of the TI texture and probability trends. |
doi_str_mv | 10.1007/s00477-016-1277-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1948056855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1948056855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3864173c107cf102e0c4a14371a895704d4bc463c06578edd0afc868507c7923</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpD2CzxBw4J07ssKGKj0pFIAGz5TpOapTGxecM_fe4CkIsLPYNz_uc7iXkksE1AxA3CMCFyIBVGcvTIE_IjPGiyoq8rE9_Zw7nZIHoNilTFnXNYEb2qyHaLujo_EB9S3djH92-txR9G2mjo6ZoI1I30OfXNxq3YZyYwe-c7mnvO4fRGRqSxSa5H26ppkZjUsSxORylnUa6PTRpi8ULctbqHu3i55-Tj4f79-VTtn55XC3v1pkpWBXTKyvORGEYCNMyyC0YrtMhgmlZlwJ4wzeGV4WBqhTSNg3o1shKlokXdV7MydXk3Qf_NVqM6tOPYUgrFau5hDKhZaLYRJngEYNt1T64nQ4HxUAdu1VTtyp1q47dKpky-ZTBxA6dDX_M_4a-Af4lfBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948056855</pqid></control><display><type>article</type><title>Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates</title><source>SpringerLink Journals</source><creator>Rezaee, Hassan ; Marcotte, Denis</creator><creatorcontrib>Rezaee, Hassan ; Marcotte, Denis</creatorcontrib><description>A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regression classifier into as many probability fields as there are categories. The local category proportions are used and compared to the average category probabilities within the patch. The conditioning to HD is obtained using alternative training images and by imposing large relative weights to HD. The conditioning to soft data is obtained by measuring the probability–proportion patch distance. Both 2D and 3D cases are considered. Synthetic cases show that a stationary TI can generate non-stationary realizations reproducing the HD, keeping the texture indicated by the TI and following the trends identified in probability maps obtained from soft data. A real case study, the Mallik methane-hydrate field, shows perfect reproduction of HD while keeping a good reproduction of the TI texture and probability trends.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-016-1277-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Case studies ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Conditioning ; Earth and Environmental Science ; Earth Sciences ; Environment ; Executive information systems ; Gas hydrates ; Geostatistics ; Hydrates ; Integration ; Math. Appl. in Environmental Science ; Online analytical processing ; Original Paper ; Physics ; Probability ; Probability Theory and Stochastic Processes ; Regression ; Statistical analysis ; Statistics for Engineering ; Texture ; Trends ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1727-1745</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3864173c107cf102e0c4a14371a895704d4bc463c06578edd0afc868507c7923</citedby><cites>FETCH-LOGICAL-c316t-c3864173c107cf102e0c4a14371a895704d4bc463c06578edd0afc868507c7923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-016-1277-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-016-1277-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rezaee, Hassan</creatorcontrib><creatorcontrib>Marcotte, Denis</creatorcontrib><title>Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regression classifier into as many probability fields as there are categories. The local category proportions are used and compared to the average category probabilities within the patch. The conditioning to HD is obtained using alternative training images and by imposing large relative weights to HD. The conditioning to soft data is obtained by measuring the probability–proportion patch distance. Both 2D and 3D cases are considered. Synthetic cases show that a stationary TI can generate non-stationary realizations reproducing the HD, keeping the texture indicated by the TI and following the trends identified in probability maps obtained from soft data. A real case study, the Mallik methane-hydrate field, shows perfect reproduction of HD while keeping a good reproduction of the TI texture and probability trends.</description><subject>Aquatic Pollution</subject><subject>Case studies</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Executive information systems</subject><subject>Gas hydrates</subject><subject>Geostatistics</subject><subject>Hydrates</subject><subject>Integration</subject><subject>Math. Appl. in Environmental Science</subject><subject>Online analytical processing</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Texture</subject><subject>Trends</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EElXpD2CzxBw4J07ssKGKj0pFIAGz5TpOapTGxecM_fe4CkIsLPYNz_uc7iXkksE1AxA3CMCFyIBVGcvTIE_IjPGiyoq8rE9_Zw7nZIHoNilTFnXNYEb2qyHaLujo_EB9S3djH92-txR9G2mjo6ZoI1I30OfXNxq3YZyYwe-c7mnvO4fRGRqSxSa5H26ppkZjUsSxORylnUa6PTRpi8ULctbqHu3i55-Tj4f79-VTtn55XC3v1pkpWBXTKyvORGEYCNMyyC0YrtMhgmlZlwJ4wzeGV4WBqhTSNg3o1shKlokXdV7MydXk3Qf_NVqM6tOPYUgrFau5hDKhZaLYRJngEYNt1T64nQ4HxUAdu1VTtyp1q47dKpky-ZTBxA6dDX_M_4a-Af4lfBg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Rezaee, Hassan</creator><creator>Marcotte, Denis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope></search><sort><creationdate>20170901</creationdate><title>Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates</title><author>Rezaee, Hassan ; Marcotte, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3864173c107cf102e0c4a14371a895704d4bc463c06578edd0afc868507c7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic Pollution</topic><topic>Case studies</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Executive information systems</topic><topic>Gas hydrates</topic><topic>Geostatistics</topic><topic>Hydrates</topic><topic>Integration</topic><topic>Math. Appl. in Environmental Science</topic><topic>Online analytical processing</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Texture</topic><topic>Trends</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaee, Hassan</creatorcontrib><creatorcontrib>Marcotte, Denis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaee, Hassan</au><au>Marcotte, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>7</issue><spage>1727</spage><epage>1745</epage><pages>1727-1745</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>A new approach is described to allow conditioning to both hard data (HD) and soft data for a patch- and distance-based multiple-point geostatistical simulation. The multinomial logistic regression is used to quantify the link between HD and soft data. The soft data is converted by the logistic regression classifier into as many probability fields as there are categories. The local category proportions are used and compared to the average category probabilities within the patch. The conditioning to HD is obtained using alternative training images and by imposing large relative weights to HD. The conditioning to soft data is obtained by measuring the probability–proportion patch distance. Both 2D and 3D cases are considered. Synthetic cases show that a stationary TI can generate non-stationary realizations reproducing the HD, keeping the texture indicated by the TI and following the trends identified in probability maps obtained from soft data. A real case study, the Mallik methane-hydrate field, shows perfect reproduction of HD while keeping a good reproduction of the TI texture and probability trends.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-016-1277-8</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2017-09, Vol.31 (7), p.1727-1745 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_1948056855 |
source | SpringerLink Journals |
subjects | Aquatic Pollution Case studies Chemistry and Earth Sciences Computational Intelligence Computer Science Conditioning Earth and Environmental Science Earth Sciences Environment Executive information systems Gas hydrates Geostatistics Hydrates Integration Math. Appl. in Environmental Science Online analytical processing Original Paper Physics Probability Probability Theory and Stochastic Processes Regression Statistical analysis Statistics for Engineering Texture Trends Waste Water Technology Water Management Water Pollution Control |
title | Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20multiple%20soft%20data%20sets%20in%20MPS%20thru%20multinomial%20logistic%20regression:%20a%20case%20study%20of%20gas%20hydrates&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Rezaee,%20Hassan&rft.date=2017-09-01&rft.volume=31&rft.issue=7&rft.spage=1727&rft.epage=1745&rft.pages=1727-1745&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-016-1277-8&rft_dat=%3Cproquest_cross%3E1948056855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948056855&rft_id=info:pmid/&rfr_iscdi=true |