A profile analysis of the top Brazilian Computer Science graduate programs
Analyzing the research productivity of a country, an academic institution or even a single research group contributes to understand how science evolves and discovers new research perspectives, since such efforts usually reveal key aspects that can be improved, avoided or even applied to other contex...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2017-10, Vol.113 (1), p.237-255 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | Scientometrics |
container_volume | 113 |
creator | Silva, Thiago H. P. Laender, Alberto H. F. Davis, Clodoveu A. da Silva, Ana Paula Couto Moro, Mirella M. |
description | Analyzing the research productivity of a country, an academic institution or even a single research group contributes to understand how science evolves and discovers new research perspectives, since such efforts usually reveal key aspects that can be improved, avoided or even applied to other contexts. In this article, we present a detailed analysis of the top Brazilian Computer Science graduate programs. The analysis involves profile data on faculty members (e.g., career length and number of mentored students) and on the quality of their research efforts, assessed using the quality of their publications and collaboration patterns. The objective is to uncover factors that explain the strengths and weaknesses of graduate programs. Results show that the highest ranked programs include more experienced faculty members, who have mentored more Ph.D. students. We also show that programs target distinct publication venues, with the best ranked ones focusing on higher quality conferences and journals. By analyzing collaboration patterns, we show that intra-program relationships occur quite naturally whereas inter-program ones are still very incipient. |
doi_str_mv | 10.1007/s11192-017-2462-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1947547081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947547081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-eb7f60ce1bc993ff82924aa4077e2078beb80f4db0540b3c9d130324c70daffd3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvubKd2xlLxqUoMwGw5jl1StUmwkwF-Pa7CwMJ0N7zPe6eHkEuEawRQNwkRS84AFeNywZk4IjMstGZcL_CYzACFZiUKOCVnKW0hMwL0jDwvaR-70Ow8ta3dfaUm0S7Q4cPToevpbbTfza6xLV11-34cfKSvrvGt83QTbT3awR_4vO_TOTkJdpf8xe-ck_f7u7fVI1u_PDytlmvmRCEH5isVFuA8Vq4sRQial1xaK0Epz0HpylcagqwrKCRUwpV1_lpw6RTUNoRazMnV1JsPf44-DWbbjTE_nwyWUhVSgcacwinlYpdS9MH0sdnb-GUQzEGZmZSZrMwclBmRGT4xKWfbjY9_mv-FfgDarm5l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947547081</pqid></control><display><type>article</type><title>A profile analysis of the top Brazilian Computer Science graduate programs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Silva, Thiago H. P. ; Laender, Alberto H. F. ; Davis, Clodoveu A. ; da Silva, Ana Paula Couto ; Moro, Mirella M.</creator><creatorcontrib>Silva, Thiago H. P. ; Laender, Alberto H. F. ; Davis, Clodoveu A. ; da Silva, Ana Paula Couto ; Moro, Mirella M.</creatorcontrib><description>Analyzing the research productivity of a country, an academic institution or even a single research group contributes to understand how science evolves and discovers new research perspectives, since such efforts usually reveal key aspects that can be improved, avoided or even applied to other contexts. In this article, we present a detailed analysis of the top Brazilian Computer Science graduate programs. The analysis involves profile data on faculty members (e.g., career length and number of mentored students) and on the quality of their research efforts, assessed using the quality of their publications and collaboration patterns. The objective is to uncover factors that explain the strengths and weaknesses of graduate programs. Results show that the highest ranked programs include more experienced faculty members, who have mentored more Ph.D. students. We also show that programs target distinct publication venues, with the best ranked ones focusing on higher quality conferences and journals. By analyzing collaboration patterns, we show that intra-program relationships occur quite naturally whereas inter-program ones are still very incipient.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-017-2462-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Careers ; Collaboration ; Computer Science ; Data processing ; Graduate studies ; Information Storage and Retrieval ; Library Science ; Quality assessment ; Students</subject><ispartof>Scientometrics, 2017-10, Vol.113 (1), p.237-255</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-eb7f60ce1bc993ff82924aa4077e2078beb80f4db0540b3c9d130324c70daffd3</citedby><cites>FETCH-LOGICAL-c354t-eb7f60ce1bc993ff82924aa4077e2078beb80f4db0540b3c9d130324c70daffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-017-2462-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-017-2462-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Silva, Thiago H. P.</creatorcontrib><creatorcontrib>Laender, Alberto H. F.</creatorcontrib><creatorcontrib>Davis, Clodoveu A.</creatorcontrib><creatorcontrib>da Silva, Ana Paula Couto</creatorcontrib><creatorcontrib>Moro, Mirella M.</creatorcontrib><title>A profile analysis of the top Brazilian Computer Science graduate programs</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Analyzing the research productivity of a country, an academic institution or even a single research group contributes to understand how science evolves and discovers new research perspectives, since such efforts usually reveal key aspects that can be improved, avoided or even applied to other contexts. In this article, we present a detailed analysis of the top Brazilian Computer Science graduate programs. The analysis involves profile data on faculty members (e.g., career length and number of mentored students) and on the quality of their research efforts, assessed using the quality of their publications and collaboration patterns. The objective is to uncover factors that explain the strengths and weaknesses of graduate programs. Results show that the highest ranked programs include more experienced faculty members, who have mentored more Ph.D. students. We also show that programs target distinct publication venues, with the best ranked ones focusing on higher quality conferences and journals. By analyzing collaboration patterns, we show that intra-program relationships occur quite naturally whereas inter-program ones are still very incipient.</description><subject>Careers</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Data processing</subject><subject>Graduate studies</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Quality assessment</subject><subject>Students</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvubKd2xlLxqUoMwGw5jl1StUmwkwF-Pa7CwMJ0N7zPe6eHkEuEawRQNwkRS84AFeNywZk4IjMstGZcL_CYzACFZiUKOCVnKW0hMwL0jDwvaR-70Ow8ta3dfaUm0S7Q4cPToevpbbTfza6xLV11-34cfKSvrvGt83QTbT3awR_4vO_TOTkJdpf8xe-ck_f7u7fVI1u_PDytlmvmRCEH5isVFuA8Vq4sRQial1xaK0Epz0HpylcagqwrKCRUwpV1_lpw6RTUNoRazMnV1JsPf44-DWbbjTE_nwyWUhVSgcacwinlYpdS9MH0sdnb-GUQzEGZmZSZrMwclBmRGT4xKWfbjY9_mv-FfgDarm5l</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Silva, Thiago H. P.</creator><creator>Laender, Alberto H. F.</creator><creator>Davis, Clodoveu A.</creator><creator>da Silva, Ana Paula Couto</creator><creator>Moro, Mirella M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20171001</creationdate><title>A profile analysis of the top Brazilian Computer Science graduate programs</title><author>Silva, Thiago H. P. ; Laender, Alberto H. F. ; Davis, Clodoveu A. ; da Silva, Ana Paula Couto ; Moro, Mirella M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-eb7f60ce1bc993ff82924aa4077e2078beb80f4db0540b3c9d130324c70daffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Careers</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Data processing</topic><topic>Graduate studies</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Quality assessment</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago H. P.</creatorcontrib><creatorcontrib>Laender, Alberto H. F.</creatorcontrib><creatorcontrib>Davis, Clodoveu A.</creatorcontrib><creatorcontrib>da Silva, Ana Paula Couto</creatorcontrib><creatorcontrib>Moro, Mirella M.</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Thiago H. P.</au><au>Laender, Alberto H. F.</au><au>Davis, Clodoveu A.</au><au>da Silva, Ana Paula Couto</au><au>Moro, Mirella M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A profile analysis of the top Brazilian Computer Science graduate programs</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>113</volume><issue>1</issue><spage>237</spage><epage>255</epage><pages>237-255</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Analyzing the research productivity of a country, an academic institution or even a single research group contributes to understand how science evolves and discovers new research perspectives, since such efforts usually reveal key aspects that can be improved, avoided or even applied to other contexts. In this article, we present a detailed analysis of the top Brazilian Computer Science graduate programs. The analysis involves profile data on faculty members (e.g., career length and number of mentored students) and on the quality of their research efforts, assessed using the quality of their publications and collaboration patterns. The objective is to uncover factors that explain the strengths and weaknesses of graduate programs. Results show that the highest ranked programs include more experienced faculty members, who have mentored more Ph.D. students. We also show that programs target distinct publication venues, with the best ranked ones focusing on higher quality conferences and journals. By analyzing collaboration patterns, we show that intra-program relationships occur quite naturally whereas inter-program ones are still very incipient.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11192-017-2462-3</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2017-10, Vol.113 (1), p.237-255 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_1947547081 |
source | SpringerLink Journals - AutoHoldings |
subjects | Careers Collaboration Computer Science Data processing Graduate studies Information Storage and Retrieval Library Science Quality assessment Students |
title | A profile analysis of the top Brazilian Computer Science graduate programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20profile%20analysis%20of%20the%20top%20Brazilian%20Computer%20Science%20graduate%20programs&rft.jtitle=Scientometrics&rft.au=Silva,%20Thiago%20H.%20P.&rft.date=2017-10-01&rft.volume=113&rft.issue=1&rft.spage=237&rft.epage=255&rft.pages=237-255&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-017-2462-3&rft_dat=%3Cproquest_cross%3E1947547081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947547081&rft_id=info:pmid/&rfr_iscdi=true |