A general way of obtaining novel closed-form solutions for functionally graded columns

In this paper, we present a general methodology for solving buckling problems for inhomogeneous columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated as the general order polynomial function that satisfies all boundary conditions. For specifici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2017-10, Vol.87 (10), p.1641-1646
Hauptverfasser: Eisenberger, Moshe, Elishakoff, Isaac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1646
container_issue 10
container_start_page 1641
container_title Archive of applied mechanics (1991)
container_volume 87
creator Eisenberger, Moshe
Elishakoff, Isaac
description In this paper, we present a general methodology for solving buckling problems for inhomogeneous columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated as the general order polynomial function that satisfies all boundary conditions. For specificity, we concentrate on the boundary conditions of simple support, and employ the second-order ordinary differential equation that governs the buckling behavior. A quadratic polynomial is adopted for the description of the column’s flexural rigidity. Satisfaction of the governing differential equation leads to a set of nonlinear algebraic equations that are solved exactly. In addition to the recovery of the solutions previously found by Duncan and Elishakoff, several new solutions are arrived at.
doi_str_mv 10.1007/s00419-017-1278-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1947547079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947547079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-76c1e9a74494e529cefb4dc9c498d66321b482880f5aabf0bb873b4bf2cd96ba3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19G8JG2a5TD4BYIbdRuSNCkdOs2YtMr8ezOMCzeuHhfOvTwOQtdAb4FSeZcpFaAIBUmAyYbACVqA4IzQuoFTtKCKKwIV5-foIucNLXjF6AJ9rHDnR5_MgL_NHseAo51MP_Zjh8f45Qfshph9S0JMW5zjME99HDMuEYd5dIdkhmGPu2Ra32JXiO2YL9FZMEP2V793id4f7t_WT-Tl9fF5vXohjkM9EVk78MpIIZTwFVPOBytap5xQTVvXnIEVDWsaGipjbKDWNpJbYQNzraqt4Ut0c9zdpfg5-zzpTZxT-ShrUEJWQlKpCgVHyqWYc_JB71K_NWmvgeqDPn3Up4s-fdCnoXTYsZMLO3Y-_Vn-t_QDsdhziQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947547079</pqid></control><display><type>article</type><title>A general way of obtaining novel closed-form solutions for functionally graded columns</title><source>Springer Nature - Complete Springer Journals</source><creator>Eisenberger, Moshe ; Elishakoff, Isaac</creator><creatorcontrib>Eisenberger, Moshe ; Elishakoff, Isaac</creatorcontrib><description>In this paper, we present a general methodology for solving buckling problems for inhomogeneous columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated as the general order polynomial function that satisfies all boundary conditions. For specificity, we concentrate on the boundary conditions of simple support, and employ the second-order ordinary differential equation that governs the buckling behavior. A quadratic polynomial is adopted for the description of the column’s flexural rigidity. Satisfaction of the governing differential equation leads to a set of nonlinear algebraic equations that are solved exactly. In addition to the recovery of the solutions previously found by Duncan and Elishakoff, several new solutions are arrived at.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-017-1278-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Buckling ; Classical Mechanics ; Columns (structural) ; Differential equations ; Engineering ; Functionally gradient materials ; Mathematical analysis ; Nonlinear equations ; Ordinary differential equations ; Original ; Polynomials ; Theoretical and Applied Mechanics</subject><ispartof>Archive of applied mechanics (1991), 2017-10, Vol.87 (10), p.1641-1646</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-76c1e9a74494e529cefb4dc9c498d66321b482880f5aabf0bb873b4bf2cd96ba3</citedby><cites>FETCH-LOGICAL-c316t-76c1e9a74494e529cefb4dc9c498d66321b482880f5aabf0bb873b4bf2cd96ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-017-1278-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-017-1278-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Elishakoff, Isaac</creatorcontrib><title>A general way of obtaining novel closed-form solutions for functionally graded columns</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this paper, we present a general methodology for solving buckling problems for inhomogeneous columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated as the general order polynomial function that satisfies all boundary conditions. For specificity, we concentrate on the boundary conditions of simple support, and employ the second-order ordinary differential equation that governs the buckling behavior. A quadratic polynomial is adopted for the description of the column’s flexural rigidity. Satisfaction of the governing differential equation leads to a set of nonlinear algebraic equations that are solved exactly. In addition to the recovery of the solutions previously found by Duncan and Elishakoff, several new solutions are arrived at.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Classical Mechanics</subject><subject>Columns (structural)</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Functionally gradient materials</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Original</subject><subject>Polynomials</subject><subject>Theoretical and Applied Mechanics</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19G8JG2a5TD4BYIbdRuSNCkdOs2YtMr8ezOMCzeuHhfOvTwOQtdAb4FSeZcpFaAIBUmAyYbACVqA4IzQuoFTtKCKKwIV5-foIucNLXjF6AJ9rHDnR5_MgL_NHseAo51MP_Zjh8f45Qfshph9S0JMW5zjME99HDMuEYd5dIdkhmGPu2Ra32JXiO2YL9FZMEP2V793id4f7t_WT-Tl9fF5vXohjkM9EVk78MpIIZTwFVPOBytap5xQTVvXnIEVDWsaGipjbKDWNpJbYQNzraqt4Ut0c9zdpfg5-zzpTZxT-ShrUEJWQlKpCgVHyqWYc_JB71K_NWmvgeqDPn3Up4s-fdCnoXTYsZMLO3Y-_Vn-t_QDsdhziQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Eisenberger, Moshe</creator><creator>Elishakoff, Isaac</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171001</creationdate><title>A general way of obtaining novel closed-form solutions for functionally graded columns</title><author>Eisenberger, Moshe ; Elishakoff, Isaac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-76c1e9a74494e529cefb4dc9c498d66321b482880f5aabf0bb873b4bf2cd96ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Classical Mechanics</topic><topic>Columns (structural)</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Functionally gradient materials</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Original</topic><topic>Polynomials</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenberger, Moshe</creatorcontrib><creatorcontrib>Elishakoff, Isaac</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenberger, Moshe</au><au>Elishakoff, Isaac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general way of obtaining novel closed-form solutions for functionally graded columns</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>87</volume><issue>10</issue><spage>1641</spage><epage>1646</epage><pages>1641-1646</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this paper, we present a general methodology for solving buckling problems for inhomogeneous columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated as the general order polynomial function that satisfies all boundary conditions. For specificity, we concentrate on the boundary conditions of simple support, and employ the second-order ordinary differential equation that governs the buckling behavior. A quadratic polynomial is adopted for the description of the column’s flexural rigidity. Satisfaction of the governing differential equation leads to a set of nonlinear algebraic equations that are solved exactly. In addition to the recovery of the solutions previously found by Duncan and Elishakoff, several new solutions are arrived at.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-017-1278-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2017-10, Vol.87 (10), p.1641-1646
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_1947547079
source Springer Nature - Complete Springer Journals
subjects Boundary conditions
Buckling
Classical Mechanics
Columns (structural)
Differential equations
Engineering
Functionally gradient materials
Mathematical analysis
Nonlinear equations
Ordinary differential equations
Original
Polynomials
Theoretical and Applied Mechanics
title A general way of obtaining novel closed-form solutions for functionally graded columns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20way%20of%20obtaining%20novel%20closed-form%20solutions%20for%20functionally%20graded%20columns&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Eisenberger,%20Moshe&rft.date=2017-10-01&rft.volume=87&rft.issue=10&rft.spage=1641&rft.epage=1646&rft.pages=1641-1646&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-017-1278-1&rft_dat=%3Cproquest_cross%3E1947547079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947547079&rft_id=info:pmid/&rfr_iscdi=true