Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites

Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotube...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2017-02, Vol.57, p.101-106
Hauptverfasser: Tessema, Addis, Zhao, Dan, Moll, Joseph, Xu, Shansan, Yang, Ronggui, Li, Chen, Kumar, Sanat K., Kidane, Addis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue
container_start_page 101
container_title Polymer testing
container_volume 57
creator Tessema, Addis
Zhao, Dan
Moll, Joseph
Xu, Shansan
Yang, Ronggui
Li, Chen
Kumar, Sanat K.
Kidane, Addis
description Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.
doi_str_mv 10.1016/j.polymertesting.2016.11.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1947469821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142941816308558</els_id><sourcerecordid>1947469821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</originalsourceid><addsrcrecordid>eNqNkE9LJDEQxcOi4PjnOwT0aPem0unuNHgRUXdB2MvuOaSTipuhu9MmGWG-vRnGizdPRRWvXr36EXIDrAYG3c9tvYZpP2PMmLJfXmtepjVAzaD9QTYg-6bijZAnZMNA8GoQIM_IeUpbxlhbtBuyPjqHJtPgqPPThJFOQdvidUtfMcyY4_6WWp9WjMmHherF0oxzaXXeRaRllP9jnPVETVjszmT_7vP-4PeZjS56CSbMa0i-5Lwkp05PCa8-6wX59_T49-FX9fLn-ffD_UtlRC9zNUrH-6EZLIqOd9xqa_nYtWbkopWNA8bEoMdh7LhABtiOg-u7DkEwPTqUsrkg10ffNYa3XeGjtmEXl3JSwSB60Q2SQ1HdHVUmhpQiOrVGP-u4V8DUgbHaqq-M1YGxAlCFcVl_Oq5j-eTdY1TJeFwMWh8LVWWD_57RB__TkUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947469821</pqid></control><display><type>article</type><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</creator><creatorcontrib>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</creatorcontrib><description>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/j.polymertesting.2016.11.015</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carbon nanotubes ; Carbon-epoxy composites ; Composite materials ; Dispersion ; Heat conductivity ; Heat transfer ; Mathematical models ; Nanocomposites ; Nanoparticle dispersion ; Nanoparticles ; Polymer matrix composites ; Polymer nanocomposites ; Polymers ; Silicon dioxide ; Studies ; Temperature effects ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Polymer testing, 2017-02, Vol.57, p.101-106</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</citedby><cites>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</cites><orcidid>0000-0003-0830-0158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymertesting.2016.11.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tessema, Addis</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Moll, Joseph</creatorcontrib><creatorcontrib>Xu, Shansan</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Kidane, Addis</creatorcontrib><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><title>Polymer testing</title><description>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</description><subject>Carbon nanotubes</subject><subject>Carbon-epoxy composites</subject><subject>Composite materials</subject><subject>Dispersion</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanoparticle dispersion</subject><subject>Nanoparticles</subject><subject>Polymer matrix composites</subject><subject>Polymer nanocomposites</subject><subject>Polymers</subject><subject>Silicon dioxide</subject><subject>Studies</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LJDEQxcOi4PjnOwT0aPem0unuNHgRUXdB2MvuOaSTipuhu9MmGWG-vRnGizdPRRWvXr36EXIDrAYG3c9tvYZpP2PMmLJfXmtepjVAzaD9QTYg-6bijZAnZMNA8GoQIM_IeUpbxlhbtBuyPjqHJtPgqPPThJFOQdvidUtfMcyY4_6WWp9WjMmHherF0oxzaXXeRaRllP9jnPVETVjszmT_7vP-4PeZjS56CSbMa0i-5Lwkp05PCa8-6wX59_T49-FX9fLn-ffD_UtlRC9zNUrH-6EZLIqOd9xqa_nYtWbkopWNA8bEoMdh7LhABtiOg-u7DkEwPTqUsrkg10ffNYa3XeGjtmEXl3JSwSB60Q2SQ1HdHVUmhpQiOrVGP-u4V8DUgbHaqq-M1YGxAlCFcVl_Oq5j-eTdY1TJeFwMWh8LVWWD_57RB__TkUE</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Tessema, Addis</creator><creator>Zhao, Dan</creator><creator>Moll, Joseph</creator><creator>Xu, Shansan</creator><creator>Yang, Ronggui</creator><creator>Li, Chen</creator><creator>Kumar, Sanat K.</creator><creator>Kidane, Addis</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0830-0158</orcidid></search><sort><creationdate>201702</creationdate><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><author>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon nanotubes</topic><topic>Carbon-epoxy composites</topic><topic>Composite materials</topic><topic>Dispersion</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanoparticle dispersion</topic><topic>Nanoparticles</topic><topic>Polymer matrix composites</topic><topic>Polymer nanocomposites</topic><topic>Polymers</topic><topic>Silicon dioxide</topic><topic>Studies</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tessema, Addis</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Moll, Joseph</creatorcontrib><creatorcontrib>Xu, Shansan</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Kidane, Addis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tessema, Addis</au><au>Zhao, Dan</au><au>Moll, Joseph</au><au>Xu, Shansan</au><au>Yang, Ronggui</au><au>Li, Chen</au><au>Kumar, Sanat K.</au><au>Kidane, Addis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</atitle><jtitle>Polymer testing</jtitle><date>2017-02</date><risdate>2017</risdate><volume>57</volume><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><abstract>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymertesting.2016.11.015</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0830-0158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9418
ispartof Polymer testing, 2017-02, Vol.57, p.101-106
issn 0142-9418
1873-2348
language eng
recordid cdi_proquest_journals_1947469821
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Carbon nanotubes
Carbon-epoxy composites
Composite materials
Dispersion
Heat conductivity
Heat transfer
Mathematical models
Nanocomposites
Nanoparticle dispersion
Nanoparticles
Polymer matrix composites
Polymer nanocomposites
Polymers
Silicon dioxide
Studies
Temperature effects
Thermal conductivity
Thermodynamic properties
title Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20filler%20loading,%20geometry,%20dispersion%20and%20temperature%20on%20thermal%20conductivity%20of%20polymer%20nanocomposites&rft.jtitle=Polymer%20testing&rft.au=Tessema,%20Addis&rft.date=2017-02&rft.volume=57&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0142-9418&rft.eissn=1873-2348&rft_id=info:doi/10.1016/j.polymertesting.2016.11.015&rft_dat=%3Cproquest_cross%3E1947469821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947469821&rft_id=info:pmid/&rft_els_id=S0142941816308558&rfr_iscdi=true