Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites
Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotube...
Gespeichert in:
Veröffentlicht in: | Polymer testing 2017-02, Vol.57, p.101-106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | Polymer testing |
container_volume | 57 |
creator | Tessema, Addis Zhao, Dan Moll, Joseph Xu, Shansan Yang, Ronggui Li, Chen Kumar, Sanat K. Kidane, Addis |
description | Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior. |
doi_str_mv | 10.1016/j.polymertesting.2016.11.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1947469821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142941816308558</els_id><sourcerecordid>1947469821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</originalsourceid><addsrcrecordid>eNqNkE9LJDEQxcOi4PjnOwT0aPem0unuNHgRUXdB2MvuOaSTipuhu9MmGWG-vRnGizdPRRWvXr36EXIDrAYG3c9tvYZpP2PMmLJfXmtepjVAzaD9QTYg-6bijZAnZMNA8GoQIM_IeUpbxlhbtBuyPjqHJtPgqPPThJFOQdvidUtfMcyY4_6WWp9WjMmHherF0oxzaXXeRaRllP9jnPVETVjszmT_7vP-4PeZjS56CSbMa0i-5Lwkp05PCa8-6wX59_T49-FX9fLn-ffD_UtlRC9zNUrH-6EZLIqOd9xqa_nYtWbkopWNA8bEoMdh7LhABtiOg-u7DkEwPTqUsrkg10ffNYa3XeGjtmEXl3JSwSB60Q2SQ1HdHVUmhpQiOrVGP-u4V8DUgbHaqq-M1YGxAlCFcVl_Oq5j-eTdY1TJeFwMWh8LVWWD_57RB__TkUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947469821</pqid></control><display><type>article</type><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</creator><creatorcontrib>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</creatorcontrib><description>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/j.polymertesting.2016.11.015</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carbon nanotubes ; Carbon-epoxy composites ; Composite materials ; Dispersion ; Heat conductivity ; Heat transfer ; Mathematical models ; Nanocomposites ; Nanoparticle dispersion ; Nanoparticles ; Polymer matrix composites ; Polymer nanocomposites ; Polymers ; Silicon dioxide ; Studies ; Temperature effects ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Polymer testing, 2017-02, Vol.57, p.101-106</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</citedby><cites>FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</cites><orcidid>0000-0003-0830-0158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymertesting.2016.11.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tessema, Addis</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Moll, Joseph</creatorcontrib><creatorcontrib>Xu, Shansan</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Kidane, Addis</creatorcontrib><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><title>Polymer testing</title><description>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</description><subject>Carbon nanotubes</subject><subject>Carbon-epoxy composites</subject><subject>Composite materials</subject><subject>Dispersion</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanoparticle dispersion</subject><subject>Nanoparticles</subject><subject>Polymer matrix composites</subject><subject>Polymer nanocomposites</subject><subject>Polymers</subject><subject>Silicon dioxide</subject><subject>Studies</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LJDEQxcOi4PjnOwT0aPem0unuNHgRUXdB2MvuOaSTipuhu9MmGWG-vRnGizdPRRWvXr36EXIDrAYG3c9tvYZpP2PMmLJfXmtepjVAzaD9QTYg-6bijZAnZMNA8GoQIM_IeUpbxlhbtBuyPjqHJtPgqPPThJFOQdvidUtfMcyY4_6WWp9WjMmHherF0oxzaXXeRaRllP9jnPVETVjszmT_7vP-4PeZjS56CSbMa0i-5Lwkp05PCa8-6wX59_T49-FX9fLn-ffD_UtlRC9zNUrH-6EZLIqOd9xqa_nYtWbkopWNA8bEoMdh7LhABtiOg-u7DkEwPTqUsrkg10ffNYa3XeGjtmEXl3JSwSB60Q2SQ1HdHVUmhpQiOrVGP-u4V8DUgbHaqq-M1YGxAlCFcVl_Oq5j-eTdY1TJeFwMWh8LVWWD_57RB__TkUE</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Tessema, Addis</creator><creator>Zhao, Dan</creator><creator>Moll, Joseph</creator><creator>Xu, Shansan</creator><creator>Yang, Ronggui</creator><creator>Li, Chen</creator><creator>Kumar, Sanat K.</creator><creator>Kidane, Addis</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0830-0158</orcidid></search><sort><creationdate>201702</creationdate><title>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</title><author>Tessema, Addis ; Zhao, Dan ; Moll, Joseph ; Xu, Shansan ; Yang, Ronggui ; Li, Chen ; Kumar, Sanat K. ; Kidane, Addis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b8f27939de46262dadd2b65cb24583f10049ab9b624e01e5b9f766e140abfe883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon nanotubes</topic><topic>Carbon-epoxy composites</topic><topic>Composite materials</topic><topic>Dispersion</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanoparticle dispersion</topic><topic>Nanoparticles</topic><topic>Polymer matrix composites</topic><topic>Polymer nanocomposites</topic><topic>Polymers</topic><topic>Silicon dioxide</topic><topic>Studies</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tessema, Addis</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Moll, Joseph</creatorcontrib><creatorcontrib>Xu, Shansan</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Kumar, Sanat K.</creatorcontrib><creatorcontrib>Kidane, Addis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tessema, Addis</au><au>Zhao, Dan</au><au>Moll, Joseph</au><au>Xu, Shansan</au><au>Yang, Ronggui</au><au>Li, Chen</au><au>Kumar, Sanat K.</au><au>Kidane, Addis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites</atitle><jtitle>Polymer testing</jtitle><date>2017-02</date><risdate>2017</risdate><volume>57</volume><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><abstract>Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymertesting.2016.11.015</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0830-0158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9418 |
ispartof | Polymer testing, 2017-02, Vol.57, p.101-106 |
issn | 0142-9418 1873-2348 |
language | eng |
recordid | cdi_proquest_journals_1947469821 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Carbon nanotubes Carbon-epoxy composites Composite materials Dispersion Heat conductivity Heat transfer Mathematical models Nanocomposites Nanoparticle dispersion Nanoparticles Polymer matrix composites Polymer nanocomposites Polymers Silicon dioxide Studies Temperature effects Thermal conductivity Thermodynamic properties |
title | Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20filler%20loading,%20geometry,%20dispersion%20and%20temperature%20on%20thermal%20conductivity%20of%20polymer%20nanocomposites&rft.jtitle=Polymer%20testing&rft.au=Tessema,%20Addis&rft.date=2017-02&rft.volume=57&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0142-9418&rft.eissn=1873-2348&rft_id=info:doi/10.1016/j.polymertesting.2016.11.015&rft_dat=%3Cproquest_cross%3E1947469821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947469821&rft_id=info:pmid/&rft_els_id=S0142941816308558&rfr_iscdi=true |