Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni

Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2017-11, Vol.49 (11), p.1088-1094
Hauptverfasser: Pedrazzetti, L., Nobili, L., Magagnin, L., Bernasconi, R., Lucotti, A., Soltani, P., Mezzi, A., Kaciulis, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1094
container_issue 11
container_start_page 1088
container_title Surface and interface analysis
container_volume 49
creator Pedrazzetti, L.
Nobili, L.
Magagnin, L.
Bernasconi, R.
Lucotti, A.
Soltani, P.
Mezzi, A.
Kaciulis, S.
description Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.
doi_str_mv 10.1002/sia.6281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1947376377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947376377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-458ad5e70b304254a06e74a8982211874ec7fa62aec6d53e4c9949abe583ebb03</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmq_dJMdStBaKHqrnkM3O0pTtpiZZSv313bZePc0wPLwDL0KPBE8IxvQlOjMpqSRXaESwKnOliLxGI0w4zSmn5BbdxbjBGEsmyxFazYPfp3VmujqzaxOMTRDcr0nOd5lvsr5NwaS16zJrQjXcGtduYzYs0IJNwdew89ElqLNZf075cPfopjFthIe_OUbfb69fs_d8-TlfzKbL3FLFSM4LaeoCBK4Y5rTgBpcguJFKUkqIFBysaExJDdiyLhhwqxRXpoJCMqgqzMbo6ZK7C_6nh5j0xvehG15qorhgomRCDOr5omzwMQZo9C64rQkHTbA-VaaHyvSpsoHmF7p3LRz-dXq1mJ79ETE1bIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947376377</pqid></control><display><type>article</type><title>Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pedrazzetti, L. ; Nobili, L. ; Magagnin, L. ; Bernasconi, R. ; Lucotti, A. ; Soltani, P. ; Mezzi, A. ; Kaciulis, S.</creator><creatorcontrib>Pedrazzetti, L. ; Nobili, L. ; Magagnin, L. ; Bernasconi, R. ; Lucotti, A. ; Soltani, P. ; Mezzi, A. ; Kaciulis, S.</creatorcontrib><description>Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.6281</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Allotropes ; Allotropy ; Auger spectroscopy ; Carbon ; Chemical vapor deposition ; Copper ; Electroforming ; Foils ; Graphene ; Graphite ; metal electrodeposition ; Nickel ; Photoelectric emission ; Raman spectra ; Raman spectroscopy ; Spectrum analysis ; Substrates ; Thickness ; UPS ; X ray photoelectron spectroscopy ; XPS</subject><ispartof>Surface and interface analysis, 2017-11, Vol.49 (11), p.1088-1094</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-458ad5e70b304254a06e74a8982211874ec7fa62aec6d53e4c9949abe583ebb03</citedby><cites>FETCH-LOGICAL-c2931-458ad5e70b304254a06e74a8982211874ec7fa62aec6d53e4c9949abe583ebb03</cites><orcidid>0000-0002-9868-7626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.6281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.6281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pedrazzetti, L.</creatorcontrib><creatorcontrib>Nobili, L.</creatorcontrib><creatorcontrib>Magagnin, L.</creatorcontrib><creatorcontrib>Bernasconi, R.</creatorcontrib><creatorcontrib>Lucotti, A.</creatorcontrib><creatorcontrib>Soltani, P.</creatorcontrib><creatorcontrib>Mezzi, A.</creatorcontrib><creatorcontrib>Kaciulis, S.</creatorcontrib><title>Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni</title><title>Surface and interface analysis</title><description>Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.</description><subject>Allotropes</subject><subject>Allotropy</subject><subject>Auger spectroscopy</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Copper</subject><subject>Electroforming</subject><subject>Foils</subject><subject>Graphene</subject><subject>Graphite</subject><subject>metal electrodeposition</subject><subject>Nickel</subject><subject>Photoelectric emission</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Thickness</subject><subject>UPS</subject><subject>X ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmq_dJMdStBaKHqrnkM3O0pTtpiZZSv313bZePc0wPLwDL0KPBE8IxvQlOjMpqSRXaESwKnOliLxGI0w4zSmn5BbdxbjBGEsmyxFazYPfp3VmujqzaxOMTRDcr0nOd5lvsr5NwaS16zJrQjXcGtduYzYs0IJNwdew89ElqLNZf075cPfopjFthIe_OUbfb69fs_d8-TlfzKbL3FLFSM4LaeoCBK4Y5rTgBpcguJFKUkqIFBysaExJDdiyLhhwqxRXpoJCMqgqzMbo6ZK7C_6nh5j0xvehG15qorhgomRCDOr5omzwMQZo9C64rQkHTbA-VaaHyvSpsoHmF7p3LRz-dXq1mJ79ETE1bIk</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Pedrazzetti, L.</creator><creator>Nobili, L.</creator><creator>Magagnin, L.</creator><creator>Bernasconi, R.</creator><creator>Lucotti, A.</creator><creator>Soltani, P.</creator><creator>Mezzi, A.</creator><creator>Kaciulis, S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9868-7626</orcidid></search><sort><creationdate>201711</creationdate><title>Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni</title><author>Pedrazzetti, L. ; Nobili, L. ; Magagnin, L. ; Bernasconi, R. ; Lucotti, A. ; Soltani, P. ; Mezzi, A. ; Kaciulis, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-458ad5e70b304254a06e74a8982211874ec7fa62aec6d53e4c9949abe583ebb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allotropes</topic><topic>Allotropy</topic><topic>Auger spectroscopy</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Copper</topic><topic>Electroforming</topic><topic>Foils</topic><topic>Graphene</topic><topic>Graphite</topic><topic>metal electrodeposition</topic><topic>Nickel</topic><topic>Photoelectric emission</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Thickness</topic><topic>UPS</topic><topic>X ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrazzetti, L.</creatorcontrib><creatorcontrib>Nobili, L.</creatorcontrib><creatorcontrib>Magagnin, L.</creatorcontrib><creatorcontrib>Bernasconi, R.</creatorcontrib><creatorcontrib>Lucotti, A.</creatorcontrib><creatorcontrib>Soltani, P.</creatorcontrib><creatorcontrib>Mezzi, A.</creatorcontrib><creatorcontrib>Kaciulis, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrazzetti, L.</au><au>Nobili, L.</au><au>Magagnin, L.</au><au>Bernasconi, R.</au><au>Lucotti, A.</au><au>Soltani, P.</au><au>Mezzi, A.</au><au>Kaciulis, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni</atitle><jtitle>Surface and interface analysis</jtitle><date>2017-11</date><risdate>2017</risdate><volume>49</volume><issue>11</issue><spage>1088</spage><epage>1094</epage><pages>1088-1094</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.6281</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9868-7626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2017-11, Vol.49 (11), p.1088-1094
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_journals_1947376377
source Wiley Online Library Journals Frontfile Complete
subjects Allotropes
Allotropy
Auger spectroscopy
Carbon
Chemical vapor deposition
Copper
Electroforming
Foils
Graphene
Graphite
metal electrodeposition
Nickel
Photoelectric emission
Raman spectra
Raman spectroscopy
Spectrum analysis
Substrates
Thickness
UPS
X ray photoelectron spectroscopy
XPS
title Growth and characterization of ultrathin carbon films on electrodeposited Cu and Ni
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20characterization%20of%20ultrathin%20carbon%20films%20on%20electrodeposited%20Cu%20and%20Ni&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Pedrazzetti,%20L.&rft.date=2017-11&rft.volume=49&rft.issue=11&rft.spage=1088&rft.epage=1094&rft.pages=1088-1094&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.6281&rft_dat=%3Cproquest_cross%3E1947376377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947376377&rft_id=info:pmid/&rfr_iscdi=true