Is the Short Rate Drift Actually Nonlinear?

Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of finance (New York) 2000-02, Vol.55 (1), p.355-388
Hauptverfasser: Chapman, David A., Pearson, Neil D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 1
container_start_page 355
container_title The Journal of finance (New York)
container_volume 55
creator Chapman, David A.
Pearson, Neil D.
description Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.
doi_str_mv 10.1111/0022-1082.00208
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194716423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>222558</jstor_id><sourcerecordid>222558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</originalsourceid><addsrcrecordid>eNqFkMFPwjAUxhujiYiePXhZvJpB-7qu3ckQFMQQSASVW1PWLgwng7ZE-e_dnOHqu7yXfN_vvXwPoWuCO6SqLsYAIcECOtWExQlqERbhMIaYnKLWUT1HF86tcV2MtdDdyAV-ZYLZqrQ-eFHeBA82z3zQS_1eFcUhmJSbIt8YZe8v0VmmCmeu_nobvQ4e5_2ncDwdjvq9cZgyKkSYGEEjzAROAXPNBGSY6kSBBg6wVEpparBZxswYDQprEyUspZRxopOMC6BtdNvs3dpytzfOy3W5t5vqpCRJxEkcAa1M3caU2tI5azK5tfmnsgdJsKwfIuvIso4sfx9SEVFDfOWFOfxnl8_TwajBbhps7XxpjxgAMFarYaPmzpvvo6rsh4w55Uy-T4ZyNnubk0WykDH9AUGld14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194716423</pqid></control><display><type>article</type><title>Is the Short Rate Drift Actually Nonlinear?</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chapman, David A. ; Pearson, Neil D.</creator><creatorcontrib>Chapman, David A. ; Pearson, Neil D.</creatorcontrib><description>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</description><identifier>ISSN: 0022-1082</identifier><identifier>EISSN: 1540-6261</identifier><identifier>DOI: 10.1111/0022-1082.00208</identifier><identifier>CODEN: JLFIAN</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers, Inc</publisher><subject>Consistent estimators ; Density estimation ; Estimate reliability ; Estimation bias ; Estimators ; Interest rates ; Least squares ; Mathematical independent variables ; Mathematical models ; Nonlinearity ; Sample size ; Short term ; Studies ; Trends</subject><ispartof>The Journal of finance (New York), 2000-02, Vol.55 (1), p.355-388</ispartof><rights>Copyright 2000 American Finance Association</rights><rights>2000 the American Finance Association</rights><rights>Copyright Blackwell Publishers Inc. Feb 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</citedby><cites>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/222558$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/222558$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Chapman, David A.</creatorcontrib><creatorcontrib>Pearson, Neil D.</creatorcontrib><title>Is the Short Rate Drift Actually Nonlinear?</title><title>The Journal of finance (New York)</title><description>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</description><subject>Consistent estimators</subject><subject>Density estimation</subject><subject>Estimate reliability</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Interest rates</subject><subject>Least squares</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Sample size</subject><subject>Short term</subject><subject>Studies</subject><subject>Trends</subject><issn>0022-1082</issn><issn>1540-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUxhujiYiePXhZvJpB-7qu3ckQFMQQSASVW1PWLgwng7ZE-e_dnOHqu7yXfN_vvXwPoWuCO6SqLsYAIcECOtWExQlqERbhMIaYnKLWUT1HF86tcV2MtdDdyAV-ZYLZqrQ-eFHeBA82z3zQS_1eFcUhmJSbIt8YZe8v0VmmCmeu_nobvQ4e5_2ncDwdjvq9cZgyKkSYGEEjzAROAXPNBGSY6kSBBg6wVEpparBZxswYDQprEyUspZRxopOMC6BtdNvs3dpytzfOy3W5t5vqpCRJxEkcAa1M3caU2tI5azK5tfmnsgdJsKwfIuvIso4sfx9SEVFDfOWFOfxnl8_TwajBbhps7XxpjxgAMFarYaPmzpvvo6rsh4w55Uy-T4ZyNnubk0WykDH9AUGld14</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Chapman, David A.</creator><creator>Pearson, Neil D.</creator><general>Blackwell Publishers, Inc</general><general>Blackwell Publishers</general><general>Blackwell Publishers Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200002</creationdate><title>Is the Short Rate Drift Actually Nonlinear?</title><author>Chapman, David A. ; Pearson, Neil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Consistent estimators</topic><topic>Density estimation</topic><topic>Estimate reliability</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Interest rates</topic><topic>Least squares</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Sample size</topic><topic>Short term</topic><topic>Studies</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, David A.</creatorcontrib><creatorcontrib>Pearson, Neil D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Journal of finance (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, David A.</au><au>Pearson, Neil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is the Short Rate Drift Actually Nonlinear?</atitle><jtitle>The Journal of finance (New York)</jtitle><date>2000-02</date><risdate>2000</risdate><volume>55</volume><issue>1</issue><spage>355</spage><epage>388</epage><pages>355-388</pages><issn>0022-1082</issn><eissn>1540-6261</eissn><coden>JLFIAN</coden><abstract>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/0022-1082.00208</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1082
ispartof The Journal of finance (New York), 2000-02, Vol.55 (1), p.355-388
issn 0022-1082
1540-6261
language eng
recordid cdi_proquest_journals_194716423
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Consistent estimators
Density estimation
Estimate reliability
Estimation bias
Estimators
Interest rates
Least squares
Mathematical independent variables
Mathematical models
Nonlinearity
Sample size
Short term
Studies
Trends
title Is the Short Rate Drift Actually Nonlinear?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20the%20Short%20Rate%20Drift%20Actually%20Nonlinear?&rft.jtitle=The%20Journal%20of%20finance%20(New%20York)&rft.au=Chapman,%20David%20A.&rft.date=2000-02&rft.volume=55&rft.issue=1&rft.spage=355&rft.epage=388&rft.pages=355-388&rft.issn=0022-1082&rft.eissn=1540-6261&rft.coden=JLFIAN&rft_id=info:doi/10.1111/0022-1082.00208&rft_dat=%3Cjstor_proqu%3E222558%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194716423&rft_id=info:pmid/&rft_jstor_id=222558&rfr_iscdi=true