Is the Short Rate Drift Actually Nonlinear?
Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root dif...
Gespeichert in:
Veröffentlicht in: | The Journal of finance (New York) 2000-02, Vol.55 (1), p.355-388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 1 |
container_start_page | 355 |
container_title | The Journal of finance (New York) |
container_volume | 55 |
creator | Chapman, David A. Pearson, Neil D. |
description | Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact. |
doi_str_mv | 10.1111/0022-1082.00208 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194716423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>222558</jstor_id><sourcerecordid>222558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</originalsourceid><addsrcrecordid>eNqFkMFPwjAUxhujiYiePXhZvJpB-7qu3ckQFMQQSASVW1PWLgwng7ZE-e_dnOHqu7yXfN_vvXwPoWuCO6SqLsYAIcECOtWExQlqERbhMIaYnKLWUT1HF86tcV2MtdDdyAV-ZYLZqrQ-eFHeBA82z3zQS_1eFcUhmJSbIt8YZe8v0VmmCmeu_nobvQ4e5_2ncDwdjvq9cZgyKkSYGEEjzAROAXPNBGSY6kSBBg6wVEpparBZxswYDQprEyUspZRxopOMC6BtdNvs3dpytzfOy3W5t5vqpCRJxEkcAa1M3caU2tI5azK5tfmnsgdJsKwfIuvIso4sfx9SEVFDfOWFOfxnl8_TwajBbhps7XxpjxgAMFarYaPmzpvvo6rsh4w55Uy-T4ZyNnubk0WykDH9AUGld14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194716423</pqid></control><display><type>article</type><title>Is the Short Rate Drift Actually Nonlinear?</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chapman, David A. ; Pearson, Neil D.</creator><creatorcontrib>Chapman, David A. ; Pearson, Neil D.</creatorcontrib><description>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</description><identifier>ISSN: 0022-1082</identifier><identifier>EISSN: 1540-6261</identifier><identifier>DOI: 10.1111/0022-1082.00208</identifier><identifier>CODEN: JLFIAN</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers, Inc</publisher><subject>Consistent estimators ; Density estimation ; Estimate reliability ; Estimation bias ; Estimators ; Interest rates ; Least squares ; Mathematical independent variables ; Mathematical models ; Nonlinearity ; Sample size ; Short term ; Studies ; Trends</subject><ispartof>The Journal of finance (New York), 2000-02, Vol.55 (1), p.355-388</ispartof><rights>Copyright 2000 American Finance Association</rights><rights>2000 the American Finance Association</rights><rights>Copyright Blackwell Publishers Inc. Feb 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</citedby><cites>FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/222558$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/222558$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Chapman, David A.</creatorcontrib><creatorcontrib>Pearson, Neil D.</creatorcontrib><title>Is the Short Rate Drift Actually Nonlinear?</title><title>The Journal of finance (New York)</title><description>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</description><subject>Consistent estimators</subject><subject>Density estimation</subject><subject>Estimate reliability</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Interest rates</subject><subject>Least squares</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Sample size</subject><subject>Short term</subject><subject>Studies</subject><subject>Trends</subject><issn>0022-1082</issn><issn>1540-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUxhujiYiePXhZvJpB-7qu3ckQFMQQSASVW1PWLgwng7ZE-e_dnOHqu7yXfN_vvXwPoWuCO6SqLsYAIcECOtWExQlqERbhMIaYnKLWUT1HF86tcV2MtdDdyAV-ZYLZqrQ-eFHeBA82z3zQS_1eFcUhmJSbIt8YZe8v0VmmCmeu_nobvQ4e5_2ncDwdjvq9cZgyKkSYGEEjzAROAXPNBGSY6kSBBg6wVEpparBZxswYDQprEyUspZRxopOMC6BtdNvs3dpytzfOy3W5t5vqpCRJxEkcAa1M3caU2tI5azK5tfmnsgdJsKwfIuvIso4sfx9SEVFDfOWFOfxnl8_TwajBbhps7XxpjxgAMFarYaPmzpvvo6rsh4w55Uy-T4ZyNnubk0WykDH9AUGld14</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Chapman, David A.</creator><creator>Pearson, Neil D.</creator><general>Blackwell Publishers, Inc</general><general>Blackwell Publishers</general><general>Blackwell Publishers Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200002</creationdate><title>Is the Short Rate Drift Actually Nonlinear?</title><author>Chapman, David A. ; Pearson, Neil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5388-9e8340580c207d582f03d9a2d2722baaad3e0eb65eed2a0de495c33571d9f7823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Consistent estimators</topic><topic>Density estimation</topic><topic>Estimate reliability</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Interest rates</topic><topic>Least squares</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Sample size</topic><topic>Short term</topic><topic>Studies</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, David A.</creatorcontrib><creatorcontrib>Pearson, Neil D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Journal of finance (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, David A.</au><au>Pearson, Neil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is the Short Rate Drift Actually Nonlinear?</atitle><jtitle>The Journal of finance (New York)</jtitle><date>2000-02</date><risdate>2000</risdate><volume>55</volume><issue>1</issue><spage>355</spage><epage>388</epage><pages>355-388</pages><issn>0022-1082</issn><eissn>1540-6261</eissn><coden>JLFIAN</coden><abstract>Aït-Sahalia (1996) and Stanton (1997) use nonparametric estimators applied to short-term interest rate data to conclude that the drift function contains important nonlinearities. We study the finite-sample properties of their estimators by applying them to simulated sample paths of a square-root diffusion. Although the drift function is linear, both estimators suggest nonlinearities of the type and magnitude reported in Aït-Sahalia (1996) and Stanton (1997). Combined with the results of a weighted least squares estimator, this evidence implies that nonlinearity of the short rate drift is not a robust stylized fact.</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/0022-1082.00208</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1082 |
ispartof | The Journal of finance (New York), 2000-02, Vol.55 (1), p.355-388 |
issn | 0022-1082 1540-6261 |
language | eng |
recordid | cdi_proquest_journals_194716423 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Consistent estimators Density estimation Estimate reliability Estimation bias Estimators Interest rates Least squares Mathematical independent variables Mathematical models Nonlinearity Sample size Short term Studies Trends |
title | Is the Short Rate Drift Actually Nonlinear? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20the%20Short%20Rate%20Drift%20Actually%20Nonlinear?&rft.jtitle=The%20Journal%20of%20finance%20(New%20York)&rft.au=Chapman,%20David%20A.&rft.date=2000-02&rft.volume=55&rft.issue=1&rft.spage=355&rft.epage=388&rft.pages=355-388&rft.issn=0022-1082&rft.eissn=1540-6261&rft.coden=JLFIAN&rft_id=info:doi/10.1111/0022-1082.00208&rft_dat=%3Cjstor_proqu%3E222558%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194716423&rft_id=info:pmid/&rft_jstor_id=222558&rfr_iscdi=true |