The Calculation of Implied Variances from the Black-Scholes Model: A Note

Black and Scholes (1973) derived a model for the equilibrium price of a European Stock Purchase option. According to this model, equilibrium option prices are a function of the time to maturity of the option, the exercise price, the current price of the underlying stock, the risk-free rate of intere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of finance (New York) 1982-03, Vol.37 (1), p.227-230
Hauptverfasser: MANASTER, STEVEN, KOEHLER, GARY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 1
container_start_page 227
container_title The Journal of finance (New York)
container_volume 37
creator MANASTER, STEVEN
KOEHLER, GARY
description Black and Scholes (1973) derived a model for the equilibrium price of a European Stock Purchase option. According to this model, equilibrium option prices are a function of the time to maturity of the option, the exercise price, the current price of the underlying stock, the risk-free rate of interest, and the instantaneous variance of the stock's rate of return. Only the first 4 of these variables can be observed; the instantaneous variance of the stock's return can only be estimated. Recently several authors have tried to use the Black-Scholes formula to derive an implied variance. This implied variance cannot be calculated explicitly, and researchers have used numerical methods such as the Newton-Raphson method. The necessary and sufficient conditions for the existence of a positive implied variance are given. An algorithm is presented which converges monotonically and quadratically to the implied variance when it exists. The algorithm provides a starting value for the first iteration of the Newton-Raphson procedure.
doi_str_mv 10.1111/j.1540-6261.1982.tb01105.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194703790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2327127</jstor_id><sourcerecordid>2327127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-8ff8d3fc0044992470edcc0ac9d93ba8212b65da48d0997dfd43926a08450d7e3</originalsourceid><addsrcrecordid>eNqVkEtPxCAUhYnRxPHxHxrjtvUCpRRX6sTR8bnwlbghDNDY2hlG6MTx30tTY9x6F3C5fOfc5CB0gCHDsY6aDLMc0oIUOMOiJFk3A4yBZesNNPr92kQjAEJSDCXZRjshNNAXYyM0fXyzyVi1etWqrnaLxFXJdL5sa2uSZ-VrtdA2JJV386SL5Fmr9Hv6oN9cG8e3ztj2ODlN7lxn99BWpdpg93_uXfQ0OX8cX6Y39xfT8elNqmkBLC2rqjS00gB5LgTJOVijNSgtjKAzVRJMZgUzKi8NCMFNZXIqSKGgzBkYbukuOhh8l959rGzoZONWfhFXSiyiHeUCInQ8QNq7ELyt5NLXc-W_JAbZJycb2ccj-3hkn5z8SU6uo_hkEH_Wrf36h1Je3U-mfRstDgeLJnTO_7UgFHg8CMeERywdsDp0dv2LKf8uC045ky93F1JcY_ZK8_ig38I4jnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194703790</pqid></control><display><type>article</type><title>The Calculation of Implied Variances from the Black-Scholes Model: A Note</title><source>JSTOR Archive Collection A-Z Listing</source><creator>MANASTER, STEVEN ; KOEHLER, GARY</creator><creatorcontrib>MANASTER, STEVEN ; KOEHLER, GARY</creatorcontrib><description>Black and Scholes (1973) derived a model for the equilibrium price of a European Stock Purchase option. According to this model, equilibrium option prices are a function of the time to maturity of the option, the exercise price, the current price of the underlying stock, the risk-free rate of interest, and the instantaneous variance of the stock's rate of return. Only the first 4 of these variables can be observed; the instantaneous variance of the stock's return can only be estimated. Recently several authors have tried to use the Black-Scholes formula to derive an implied variance. This implied variance cannot be calculated explicitly, and researchers have used numerical methods such as the Newton-Raphson method. The necessary and sufficient conditions for the existence of a positive implied variance are given. An algorithm is presented which converges monotonically and quadratically to the implied variance when it exists. The algorithm provides a starting value for the first iteration of the Newton-Raphson procedure.</description><identifier>ISSN: 0022-1082</identifier><identifier>EISSN: 1540-6261</identifier><identifier>DOI: 10.1111/j.1540-6261.1982.tb01105.x</identifier><identifier>CODEN: JLFIAN</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Market prices ; Mathematical models ; Pricing ; Purchase options ; Securities prices ; Statistical discrepancies ; Stochastic models ; Stock options ; Valuation</subject><ispartof>The Journal of finance (New York), 1982-03, Vol.37 (1), p.227-230</ispartof><rights>Copyright 1982 American Finance Association</rights><rights>1982 the American Finance Association</rights><rights>Copyright Blackwell Publishers Inc. Mar 1982</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-8ff8d3fc0044992470edcc0ac9d93ba8212b65da48d0997dfd43926a08450d7e3</citedby><cites>FETCH-LOGICAL-c3605-8ff8d3fc0044992470edcc0ac9d93ba8212b65da48d0997dfd43926a08450d7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2327127$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2327127$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>MANASTER, STEVEN</creatorcontrib><creatorcontrib>KOEHLER, GARY</creatorcontrib><title>The Calculation of Implied Variances from the Black-Scholes Model: A Note</title><title>The Journal of finance (New York)</title><description>Black and Scholes (1973) derived a model for the equilibrium price of a European Stock Purchase option. According to this model, equilibrium option prices are a function of the time to maturity of the option, the exercise price, the current price of the underlying stock, the risk-free rate of interest, and the instantaneous variance of the stock's rate of return. Only the first 4 of these variables can be observed; the instantaneous variance of the stock's return can only be estimated. Recently several authors have tried to use the Black-Scholes formula to derive an implied variance. This implied variance cannot be calculated explicitly, and researchers have used numerical methods such as the Newton-Raphson method. The necessary and sufficient conditions for the existence of a positive implied variance are given. An algorithm is presented which converges monotonically and quadratically to the implied variance when it exists. The algorithm provides a starting value for the first iteration of the Newton-Raphson procedure.</description><subject>Market prices</subject><subject>Mathematical models</subject><subject>Pricing</subject><subject>Purchase options</subject><subject>Securities prices</subject><subject>Statistical discrepancies</subject><subject>Stochastic models</subject><subject>Stock options</subject><subject>Valuation</subject><issn>0022-1082</issn><issn>1540-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqVkEtPxCAUhYnRxPHxHxrjtvUCpRRX6sTR8bnwlbghDNDY2hlG6MTx30tTY9x6F3C5fOfc5CB0gCHDsY6aDLMc0oIUOMOiJFk3A4yBZesNNPr92kQjAEJSDCXZRjshNNAXYyM0fXyzyVi1etWqrnaLxFXJdL5sa2uSZ-VrtdA2JJV386SL5Fmr9Hv6oN9cG8e3ztj2ODlN7lxn99BWpdpg93_uXfQ0OX8cX6Y39xfT8elNqmkBLC2rqjS00gB5LgTJOVijNSgtjKAzVRJMZgUzKi8NCMFNZXIqSKGgzBkYbukuOhh8l959rGzoZONWfhFXSiyiHeUCInQ8QNq7ELyt5NLXc-W_JAbZJycb2ccj-3hkn5z8SU6uo_hkEH_Wrf36h1Je3U-mfRstDgeLJnTO_7UgFHg8CMeERywdsDp0dv2LKf8uC045ky93F1JcY_ZK8_ig38I4jnM</recordid><startdate>198203</startdate><enddate>198203</enddate><creator>MANASTER, STEVEN</creator><creator>KOEHLER, GARY</creator><general>Blackwell Publishing Ltd</general><general>American Finance Association</general><general>Blackwell Publishers Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>198203</creationdate><title>The Calculation of Implied Variances from the Black-Scholes Model: A Note</title><author>MANASTER, STEVEN ; KOEHLER, GARY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-8ff8d3fc0044992470edcc0ac9d93ba8212b65da48d0997dfd43926a08450d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Market prices</topic><topic>Mathematical models</topic><topic>Pricing</topic><topic>Purchase options</topic><topic>Securities prices</topic><topic>Statistical discrepancies</topic><topic>Stochastic models</topic><topic>Stock options</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANASTER, STEVEN</creatorcontrib><creatorcontrib>KOEHLER, GARY</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Journal of finance (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANASTER, STEVEN</au><au>KOEHLER, GARY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Calculation of Implied Variances from the Black-Scholes Model: A Note</atitle><jtitle>The Journal of finance (New York)</jtitle><date>1982-03</date><risdate>1982</risdate><volume>37</volume><issue>1</issue><spage>227</spage><epage>230</epage><pages>227-230</pages><issn>0022-1082</issn><eissn>1540-6261</eissn><coden>JLFIAN</coden><abstract>Black and Scholes (1973) derived a model for the equilibrium price of a European Stock Purchase option. According to this model, equilibrium option prices are a function of the time to maturity of the option, the exercise price, the current price of the underlying stock, the risk-free rate of interest, and the instantaneous variance of the stock's rate of return. Only the first 4 of these variables can be observed; the instantaneous variance of the stock's return can only be estimated. Recently several authors have tried to use the Black-Scholes formula to derive an implied variance. This implied variance cannot be calculated explicitly, and researchers have used numerical methods such as the Newton-Raphson method. The necessary and sufficient conditions for the existence of a positive implied variance are given. An algorithm is presented which converges monotonically and quadratically to the implied variance when it exists. The algorithm provides a starting value for the first iteration of the Newton-Raphson procedure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1540-6261.1982.tb01105.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1082
ispartof The Journal of finance (New York), 1982-03, Vol.37 (1), p.227-230
issn 0022-1082
1540-6261
language eng
recordid cdi_proquest_journals_194703790
source JSTOR Archive Collection A-Z Listing
subjects Market prices
Mathematical models
Pricing
Purchase options
Securities prices
Statistical discrepancies
Stochastic models
Stock options
Valuation
title The Calculation of Implied Variances from the Black-Scholes Model: A Note
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Calculation%20of%20Implied%20Variances%20from%20the%20Black-Scholes%20Model:%20A%20Note&rft.jtitle=The%20Journal%20of%20finance%20(New%20York)&rft.au=MANASTER,%20STEVEN&rft.date=1982-03&rft.volume=37&rft.issue=1&rft.spage=227&rft.epage=230&rft.pages=227-230&rft.issn=0022-1082&rft.eissn=1540-6261&rft.coden=JLFIAN&rft_id=info:doi/10.1111/j.1540-6261.1982.tb01105.x&rft_dat=%3Cjstor_proqu%3E2327127%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194703790&rft_id=info:pmid/&rft_jstor_id=2327127&rfr_iscdi=true