Labor Turnover Bias in Estimating Wages

Cross-sectional earnings function analyses typically do not recognise the potential for misrepresentation arising from a relationship between unobserved ability and the probability of labor turnover. Our point is that if individuals staying with the firm for relatively long periods of time are more,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 1988-02, Vol.70 (1), p.117-123
Hauptverfasser: Beggs, John J., Chapman, Bruce J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 117
container_title The review of economics and statistics
container_volume 70
creator Beggs, John J.
Chapman, Bruce J.
description Cross-sectional earnings function analyses typically do not recognise the potential for misrepresentation arising from a relationship between unobserved ability and the probability of labor turnover. Our point is that if individuals staying with the firm for relatively long periods of time are more, or less, able on average than recent hires, the coefficient estimated on tenure is necessarily biased. This is an important issue for wage determination modelling given the relevance of tenure to wages. In this note we examine the theoretical basis of our claim, and propose and implement a solution to the problem with a novel use of instrumental variables on a large sample of workers employed in the Australian government.
doi_str_mv 10.2307/1928157
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194681348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1928157</jstor_id><sourcerecordid>1928157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-e13e8df636f07d5f66d321e711913189c09cd91e86c80fea071e7f7e13b65a1e3</originalsourceid><addsrcrecordid>eNp10EtLw0AQAOBFFIxV_AtBhZ6iM7vZ11FLfUDAS8Xjsk12S4ImdTcV_PddSa89zWG-eRJyjXBPGcgH1FQhlyckQ86g0FjSU5IBsLIQnPFzchFjBwAokWVkXtn1EPLVLvTDrwv5U2tj3vb5Mo7ttx3bfpN_2o2Ll-TM26_org5xRj6el6vFa1G9v7wtHquipkyPhUPmVOMFEx5kw70QDaPoJKJGhkrXoOtGo1OiVuCdBZmSXqayteAWHZuRm6nvNgw_OxdH0w1ptzTSoC6FQlaqhG6PIqpBSQqKJzWfVB2GGIPzZhvSTeHPIJj_V5nDq5K8m2QXxyEcZXsDU2KC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290872085</pqid></control><display><type>article</type><title>Labor Turnover Bias in Estimating Wages</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Beggs, John J. ; Chapman, Bruce J.</creator><creatorcontrib>Beggs, John J. ; Chapman, Bruce J.</creatorcontrib><description>Cross-sectional earnings function analyses typically do not recognise the potential for misrepresentation arising from a relationship between unobserved ability and the probability of labor turnover. Our point is that if individuals staying with the firm for relatively long periods of time are more, or less, able on average than recent hires, the coefficient estimated on tenure is necessarily biased. This is an important issue for wage determination modelling given the relevance of tenure to wages. In this note we examine the theoretical basis of our claim, and propose and implement a solution to the problem with a novel use of instrumental variables on a large sample of workers employed in the Australian government.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.2307/1928157</identifier><identifier>CODEN: RECSA9</identifier><language>eng</language><publisher>Cambridge, Mass: Elsevier Science Publishers B.V. (North-Holland)</publisher><subject>Coefficients ; Comparative analysis ; Consistent estimators ; Econometrics ; Economic statistics ; Employee turnover ; Employment ; Estimation bias ; Instrumental variables estimation ; Men ; Statistical analysis ; Studies ; Wage rates ; Wages ; Wages &amp; salaries ; Workforce ; Working women</subject><ispartof>The review of economics and statistics, 1988-02, Vol.70 (1), p.117-123</ispartof><rights>Copyright 1988 The President and Fellows of Harvard College</rights><rights>Copyright MIT Press Journals Feb 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-e13e8df636f07d5f66d321e711913189c09cd91e86c80fea071e7f7e13b65a1e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1928157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1928157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Beggs, John J.</creatorcontrib><creatorcontrib>Chapman, Bruce J.</creatorcontrib><title>Labor Turnover Bias in Estimating Wages</title><title>The review of economics and statistics</title><description>Cross-sectional earnings function analyses typically do not recognise the potential for misrepresentation arising from a relationship between unobserved ability and the probability of labor turnover. Our point is that if individuals staying with the firm for relatively long periods of time are more, or less, able on average than recent hires, the coefficient estimated on tenure is necessarily biased. This is an important issue for wage determination modelling given the relevance of tenure to wages. In this note we examine the theoretical basis of our claim, and propose and implement a solution to the problem with a novel use of instrumental variables on a large sample of workers employed in the Australian government.</description><subject>Coefficients</subject><subject>Comparative analysis</subject><subject>Consistent estimators</subject><subject>Econometrics</subject><subject>Economic statistics</subject><subject>Employee turnover</subject><subject>Employment</subject><subject>Estimation bias</subject><subject>Instrumental variables estimation</subject><subject>Men</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Wage rates</subject><subject>Wages</subject><subject>Wages &amp; salaries</subject><subject>Workforce</subject><subject>Working women</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp10EtLw0AQAOBFFIxV_AtBhZ6iM7vZ11FLfUDAS8Xjsk12S4ImdTcV_PddSa89zWG-eRJyjXBPGcgH1FQhlyckQ86g0FjSU5IBsLIQnPFzchFjBwAokWVkXtn1EPLVLvTDrwv5U2tj3vb5Mo7ttx3bfpN_2o2Ll-TM26_org5xRj6el6vFa1G9v7wtHquipkyPhUPmVOMFEx5kw70QDaPoJKJGhkrXoOtGo1OiVuCdBZmSXqayteAWHZuRm6nvNgw_OxdH0w1ptzTSoC6FQlaqhG6PIqpBSQqKJzWfVB2GGIPzZhvSTeHPIJj_V5nDq5K8m2QXxyEcZXsDU2KC</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Beggs, John J.</creator><creator>Chapman, Bruce J.</creator><general>Elsevier Science Publishers B.V. (North-Holland)</general><general>Harvard University Press, etc</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19880201</creationdate><title>Labor Turnover Bias in Estimating Wages</title><author>Beggs, John J. ; Chapman, Bruce J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-e13e8df636f07d5f66d321e711913189c09cd91e86c80fea071e7f7e13b65a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Coefficients</topic><topic>Comparative analysis</topic><topic>Consistent estimators</topic><topic>Econometrics</topic><topic>Economic statistics</topic><topic>Employee turnover</topic><topic>Employment</topic><topic>Estimation bias</topic><topic>Instrumental variables estimation</topic><topic>Men</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Wage rates</topic><topic>Wages</topic><topic>Wages &amp; salaries</topic><topic>Workforce</topic><topic>Working women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beggs, John J.</creatorcontrib><creatorcontrib>Chapman, Bruce J.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beggs, John J.</au><au>Chapman, Bruce J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Labor Turnover Bias in Estimating Wages</atitle><jtitle>The review of economics and statistics</jtitle><date>1988-02-01</date><risdate>1988</risdate><volume>70</volume><issue>1</issue><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><coden>RECSA9</coden><abstract>Cross-sectional earnings function analyses typically do not recognise the potential for misrepresentation arising from a relationship between unobserved ability and the probability of labor turnover. Our point is that if individuals staying with the firm for relatively long periods of time are more, or less, able on average than recent hires, the coefficient estimated on tenure is necessarily biased. This is an important issue for wage determination modelling given the relevance of tenure to wages. In this note we examine the theoretical basis of our claim, and propose and implement a solution to the problem with a novel use of instrumental variables on a large sample of workers employed in the Australian government.</abstract><cop>Cambridge, Mass</cop><pub>Elsevier Science Publishers B.V. (North-Holland)</pub><doi>10.2307/1928157</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6535
ispartof The review of economics and statistics, 1988-02, Vol.70 (1), p.117-123
issn 0034-6535
1530-9142
language eng
recordid cdi_proquest_journals_194681348
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Coefficients
Comparative analysis
Consistent estimators
Econometrics
Economic statistics
Employee turnover
Employment
Estimation bias
Instrumental variables estimation
Men
Statistical analysis
Studies
Wage rates
Wages
Wages & salaries
Workforce
Working women
title Labor Turnover Bias in Estimating Wages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Labor%20Turnover%20Bias%20in%20Estimating%20Wages&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=Beggs,%20John%20J.&rft.date=1988-02-01&rft.volume=70&rft.issue=1&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=0034-6535&rft.eissn=1530-9142&rft.coden=RECSA9&rft_id=info:doi/10.2307/1928157&rft_dat=%3Cjstor_proqu%3E1928157%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290872085&rft_id=info:pmid/&rft_jstor_id=1928157&rfr_iscdi=true