A Unified Monotonic Approach to Generalized Linear Fractional Programming
We present an efficient unified method for solving a wide class of generalized linear fractional programming problems. This class includes such problems as: optimizing (minimizing or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear functions, optimizing a s...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2003-07, Vol.26 (3), p.229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 229 |
container_title | Journal of global optimization |
container_volume | 26 |
creator | Nguyen Thi Hoai Phuong Hoang Tuy |
description | We present an efficient unified method for solving a wide class of generalized linear fractional programming problems. This class includes such problems as: optimizing (minimizing or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear functions, optimizing a sum or product of such ratios, etc. - over a polytope. Our approach is based on the recently developed theory of monotonic optimization. |
doi_str_mv | 10.1023/A:1023274721632 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_194675317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>945089431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-3a28585f33dda988f36ca9f12152cd58d219828a636fe69babca365e3e4d87113</originalsourceid><addsrcrecordid>eNotjk1PAjEUABujifhx9tp4X-17j3ZbbxsiSILRg5zJo9vFEmixu1z89WL0NJfJZIS4A_UACumxefoF1uMawRCeiRHomip0YM7FSDnUlVYKLsVV32-VUs5qHIl5I5cpdjG08jWnPOQUvWwOh5LZf8ohy1lIofAufp-MRUyBi5wW9kPMiXfyveRN4f0-ps2NuOh414fbf16L5fT5Y_JSLd5m80mzqDyiHSpitNrqjqht2VnbkfHsOkDQ6FttWwRn0bIh0wXj1rz2TEYHCuPW1gB0Le7_uqfHr2Poh9U2H8tppl-BG5taE9T0AytbTaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194675317</pqid></control><display><type>article</type><title>A Unified Monotonic Approach to Generalized Linear Fractional Programming</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nguyen Thi Hoai Phuong ; Hoang Tuy</creator><creatorcontrib>Nguyen Thi Hoai Phuong ; Hoang Tuy</creatorcontrib><description>We present an efficient unified method for solving a wide class of generalized linear fractional programming problems. This class includes such problems as: optimizing (minimizing or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear functions, optimizing a sum or product of such ratios, etc. - over a polytope. Our approach is based on the recently developed theory of monotonic optimization.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1023/A:1023274721632</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Methods ; Optimization ; Polytopes</subject><ispartof>Journal of global optimization, 2003-07, Vol.26 (3), p.229</ispartof><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-3a28585f33dda988f36ca9f12152cd58d219828a636fe69babca365e3e4d87113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen Thi Hoai Phuong</creatorcontrib><creatorcontrib>Hoang Tuy</creatorcontrib><title>A Unified Monotonic Approach to Generalized Linear Fractional Programming</title><title>Journal of global optimization</title><description>We present an efficient unified method for solving a wide class of generalized linear fractional programming problems. This class includes such problems as: optimizing (minimizing or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear functions, optimizing a sum or product of such ratios, etc. - over a polytope. Our approach is based on the recently developed theory of monotonic optimization.</description><subject>Algorithms</subject><subject>Methods</subject><subject>Optimization</subject><subject>Polytopes</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjk1PAjEUABujifhx9tp4X-17j3ZbbxsiSILRg5zJo9vFEmixu1z89WL0NJfJZIS4A_UACumxefoF1uMawRCeiRHomip0YM7FSDnUlVYKLsVV32-VUs5qHIl5I5cpdjG08jWnPOQUvWwOh5LZf8ohy1lIofAufp-MRUyBi5wW9kPMiXfyveRN4f0-ps2NuOh414fbf16L5fT5Y_JSLd5m80mzqDyiHSpitNrqjqht2VnbkfHsOkDQ6FttWwRn0bIh0wXj1rz2TEYHCuPW1gB0Le7_uqfHr2Poh9U2H8tppl-BG5taE9T0AytbTaA</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Nguyen Thi Hoai Phuong</creator><creator>Hoang Tuy</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030701</creationdate><title>A Unified Monotonic Approach to Generalized Linear Fractional Programming</title><author>Nguyen Thi Hoai Phuong ; Hoang Tuy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-3a28585f33dda988f36ca9f12152cd58d219828a636fe69babca365e3e4d87113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Methods</topic><topic>Optimization</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen Thi Hoai Phuong</creatorcontrib><creatorcontrib>Hoang Tuy</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen Thi Hoai Phuong</au><au>Hoang Tuy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Monotonic Approach to Generalized Linear Fractional Programming</atitle><jtitle>Journal of global optimization</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>26</volume><issue>3</issue><spage>229</spage><pages>229-</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We present an efficient unified method for solving a wide class of generalized linear fractional programming problems. This class includes such problems as: optimizing (minimizing or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear functions, optimizing a sum or product of such ratios, etc. - over a polytope. Our approach is based on the recently developed theory of monotonic optimization.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1023274721632</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2003-07, Vol.26 (3), p.229 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_194675317 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Methods Optimization Polytopes |
title | A Unified Monotonic Approach to Generalized Linear Fractional Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Monotonic%20Approach%20to%20Generalized%20Linear%20Fractional%20Programming&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Nguyen%20Thi%20Hoai%20Phuong&rft.date=2003-07-01&rft.volume=26&rft.issue=3&rft.spage=229&rft.pages=229-&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1023/A:1023274721632&rft_dat=%3Cproquest%3E945089431%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194675317&rft_id=info:pmid/&rfr_iscdi=true |