Production in a Service Industry Using Customer Inputs: A Stochastic Model
The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the...
Gespeichert in:
Veröffentlicht in: | The review of economics and statistics 1983-02, Vol.65 (1), p.149-153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 149 |
container_title | The review of economics and statistics |
container_volume | 65 |
creator | De Vany, Arthur S. Gramm, Wendy L. Saving, Thomas R. Smithson, Charles W. |
description | The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses. |
doi_str_mv | 10.2307/1924421 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194655509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1924421</jstor_id><sourcerecordid>1924421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4F4IKnlYnX5tdb2Xxo1JRqD0vSTarW9pNTbJC_72R9tq5DDM8vDM8CF0SuKMM5D0pKeeUHKEREQyyknB6jEYAjGe5YOIUnYWwBAAiCRuh1w_vmsHEzvW467HCc-t_O2PxtG-GEP0WL0LXf-EqDW5tfdpvhhge8ATPozPfKsTO4DfX2NU5OmnVKtiLfR-jxdPjZ_WSzd6fp9VklhkqIWZSSFtwYilhWpRa6QYYkZSo9G5umCg0banIZcEsbaDQgqRSTa51ywtgwMboape78e5nsCHWSzf4Pp2sSclzIQSUCbo-CNESUpAoZaJud5TxLgRv23rju7Xy25pA_W-z3ttM5M2OXCYP_iD2B7AEbm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290803597</pqid></control><display><type>article</type><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><source>Jstor Complete Legacy</source><source>Business Source Complete</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</creator><creatorcontrib>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</creatorcontrib><description>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.2307/1924421</identifier><identifier>CODEN: RECSA9</identifier><language>eng</language><publisher>Cambridge, Mass: North-Holland Publishing Company</publisher><subject>Capacity costs ; Capital costs ; Dentists ; Economic models ; Economic theory ; Hypotheses ; Marginal products ; Marginal revenue products ; Production ; Production engineering ; Production estimates ; Production functions ; Queuing theory ; Service industries ; Stochastic models</subject><ispartof>The review of economics and statistics, 1983-02, Vol.65 (1), p.149-153</ispartof><rights>Copyright 1983 The President and Fellows of Harvard College</rights><rights>Copyright MIT Press Journals Feb 1983</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1924421$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1924421$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>De Vany, Arthur S.</creatorcontrib><creatorcontrib>Gramm, Wendy L.</creatorcontrib><creatorcontrib>Saving, Thomas R.</creatorcontrib><creatorcontrib>Smithson, Charles W.</creatorcontrib><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><title>The review of economics and statistics</title><description>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</description><subject>Capacity costs</subject><subject>Capital costs</subject><subject>Dentists</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Hypotheses</subject><subject>Marginal products</subject><subject>Marginal revenue products</subject><subject>Production</subject><subject>Production engineering</subject><subject>Production estimates</subject><subject>Production functions</subject><subject>Queuing theory</subject><subject>Service industries</subject><subject>Stochastic models</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kE1LAzEQhoMoWKv4F4IKnlYnX5tdb2Xxo1JRqD0vSTarW9pNTbJC_72R9tq5DDM8vDM8CF0SuKMM5D0pKeeUHKEREQyyknB6jEYAjGe5YOIUnYWwBAAiCRuh1w_vmsHEzvW467HCc-t_O2PxtG-GEP0WL0LXf-EqDW5tfdpvhhge8ATPozPfKsTO4DfX2NU5OmnVKtiLfR-jxdPjZ_WSzd6fp9VklhkqIWZSSFtwYilhWpRa6QYYkZSo9G5umCg0banIZcEsbaDQgqRSTa51ywtgwMboape78e5nsCHWSzf4Pp2sSclzIQSUCbo-CNESUpAoZaJud5TxLgRv23rju7Xy25pA_W-z3ttM5M2OXCYP_iD2B7AEbm0</recordid><startdate>19830201</startdate><enddate>19830201</enddate><creator>De Vany, Arthur S.</creator><creator>Gramm, Wendy L.</creator><creator>Saving, Thomas R.</creator><creator>Smithson, Charles W.</creator><general>North-Holland Publishing Company</general><general>Harvard University Press, etc</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19830201</creationdate><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><author>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Capacity costs</topic><topic>Capital costs</topic><topic>Dentists</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Hypotheses</topic><topic>Marginal products</topic><topic>Marginal revenue products</topic><topic>Production</topic><topic>Production engineering</topic><topic>Production estimates</topic><topic>Production functions</topic><topic>Queuing theory</topic><topic>Service industries</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Vany, Arthur S.</creatorcontrib><creatorcontrib>Gramm, Wendy L.</creatorcontrib><creatorcontrib>Saving, Thomas R.</creatorcontrib><creatorcontrib>Smithson, Charles W.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Vany, Arthur S.</au><au>Gramm, Wendy L.</au><au>Saving, Thomas R.</au><au>Smithson, Charles W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production in a Service Industry Using Customer Inputs: A Stochastic Model</atitle><jtitle>The review of economics and statistics</jtitle><date>1983-02-01</date><risdate>1983</risdate><volume>65</volume><issue>1</issue><spage>149</spage><epage>153</epage><pages>149-153</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><coden>RECSA9</coden><abstract>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</abstract><cop>Cambridge, Mass</cop><pub>North-Holland Publishing Company</pub><doi>10.2307/1924421</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6535 |
ispartof | The review of economics and statistics, 1983-02, Vol.65 (1), p.149-153 |
issn | 0034-6535 1530-9142 |
language | eng |
recordid | cdi_proquest_journals_194655509 |
source | Jstor Complete Legacy; Business Source Complete; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Capacity costs Capital costs Dentists Economic models Economic theory Hypotheses Marginal products Marginal revenue products Production Production engineering Production estimates Production functions Queuing theory Service industries Stochastic models |
title | Production in a Service Industry Using Customer Inputs: A Stochastic Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20in%20a%20Service%20Industry%20Using%20Customer%20Inputs:%20A%20Stochastic%20Model&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=De%20Vany,%20Arthur%20S.&rft.date=1983-02-01&rft.volume=65&rft.issue=1&rft.spage=149&rft.epage=153&rft.pages=149-153&rft.issn=0034-6535&rft.eissn=1530-9142&rft.coden=RECSA9&rft_id=info:doi/10.2307/1924421&rft_dat=%3Cjstor_proqu%3E1924421%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290803597&rft_id=info:pmid/&rft_jstor_id=1924421&rfr_iscdi=true |