Production in a Service Industry Using Customer Inputs: A Stochastic Model

The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of economics and statistics 1983-02, Vol.65 (1), p.149-153
Hauptverfasser: De Vany, Arthur S., Gramm, Wendy L., Saving, Thomas R., Smithson, Charles W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 149
container_title The review of economics and statistics
container_volume 65
creator De Vany, Arthur S.
Gramm, Wendy L.
Saving, Thomas R.
Smithson, Charles W.
description The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.
doi_str_mv 10.2307/1924421
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194655509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1924421</jstor_id><sourcerecordid>1924421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4F4IKnlYnX5tdb2Xxo1JRqD0vSTarW9pNTbJC_72R9tq5DDM8vDM8CF0SuKMM5D0pKeeUHKEREQyyknB6jEYAjGe5YOIUnYWwBAAiCRuh1w_vmsHEzvW467HCc-t_O2PxtG-GEP0WL0LXf-EqDW5tfdpvhhge8ATPozPfKsTO4DfX2NU5OmnVKtiLfR-jxdPjZ_WSzd6fp9VklhkqIWZSSFtwYilhWpRa6QYYkZSo9G5umCg0banIZcEsbaDQgqRSTa51ywtgwMboape78e5nsCHWSzf4Pp2sSclzIQSUCbo-CNESUpAoZaJud5TxLgRv23rju7Xy25pA_W-z3ttM5M2OXCYP_iD2B7AEbm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290803597</pqid></control><display><type>article</type><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><source>Jstor Complete Legacy</source><source>Business Source Complete</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</creator><creatorcontrib>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</creatorcontrib><description>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</description><identifier>ISSN: 0034-6535</identifier><identifier>EISSN: 1530-9142</identifier><identifier>DOI: 10.2307/1924421</identifier><identifier>CODEN: RECSA9</identifier><language>eng</language><publisher>Cambridge, Mass: North-Holland Publishing Company</publisher><subject>Capacity costs ; Capital costs ; Dentists ; Economic models ; Economic theory ; Hypotheses ; Marginal products ; Marginal revenue products ; Production ; Production engineering ; Production estimates ; Production functions ; Queuing theory ; Service industries ; Stochastic models</subject><ispartof>The review of economics and statistics, 1983-02, Vol.65 (1), p.149-153</ispartof><rights>Copyright 1983 The President and Fellows of Harvard College</rights><rights>Copyright MIT Press Journals Feb 1983</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1924421$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1924421$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>De Vany, Arthur S.</creatorcontrib><creatorcontrib>Gramm, Wendy L.</creatorcontrib><creatorcontrib>Saving, Thomas R.</creatorcontrib><creatorcontrib>Smithson, Charles W.</creatorcontrib><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><title>The review of economics and statistics</title><description>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</description><subject>Capacity costs</subject><subject>Capital costs</subject><subject>Dentists</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Hypotheses</subject><subject>Marginal products</subject><subject>Marginal revenue products</subject><subject>Production</subject><subject>Production engineering</subject><subject>Production estimates</subject><subject>Production functions</subject><subject>Queuing theory</subject><subject>Service industries</subject><subject>Stochastic models</subject><issn>0034-6535</issn><issn>1530-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kE1LAzEQhoMoWKv4F4IKnlYnX5tdb2Xxo1JRqD0vSTarW9pNTbJC_72R9tq5DDM8vDM8CF0SuKMM5D0pKeeUHKEREQyyknB6jEYAjGe5YOIUnYWwBAAiCRuh1w_vmsHEzvW467HCc-t_O2PxtG-GEP0WL0LXf-EqDW5tfdpvhhge8ATPozPfKsTO4DfX2NU5OmnVKtiLfR-jxdPjZ_WSzd6fp9VklhkqIWZSSFtwYilhWpRa6QYYkZSo9G5umCg0banIZcEsbaDQgqRSTa51ywtgwMboape78e5nsCHWSzf4Pp2sSclzIQSUCbo-CNESUpAoZaJud5TxLgRv23rju7Xy25pA_W-z3ttM5M2OXCYP_iD2B7AEbm0</recordid><startdate>19830201</startdate><enddate>19830201</enddate><creator>De Vany, Arthur S.</creator><creator>Gramm, Wendy L.</creator><creator>Saving, Thomas R.</creator><creator>Smithson, Charles W.</creator><general>North-Holland Publishing Company</general><general>Harvard University Press, etc</general><general>MIT Press Journals, The</general><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19830201</creationdate><title>Production in a Service Industry Using Customer Inputs: A Stochastic Model</title><author>De Vany, Arthur S. ; Gramm, Wendy L. ; Saving, Thomas R. ; Smithson, Charles W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-757e841e213b59babd031721a1536c358b2f256783e2d08b51111ad6bbf480303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Capacity costs</topic><topic>Capital costs</topic><topic>Dentists</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Hypotheses</topic><topic>Marginal products</topic><topic>Marginal revenue products</topic><topic>Production</topic><topic>Production engineering</topic><topic>Production estimates</topic><topic>Production functions</topic><topic>Queuing theory</topic><topic>Service industries</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Vany, Arthur S.</creatorcontrib><creatorcontrib>Gramm, Wendy L.</creatorcontrib><creatorcontrib>Saving, Thomas R.</creatorcontrib><creatorcontrib>Smithson, Charles W.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The review of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Vany, Arthur S.</au><au>Gramm, Wendy L.</au><au>Saving, Thomas R.</au><au>Smithson, Charles W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production in a Service Industry Using Customer Inputs: A Stochastic Model</atitle><jtitle>The review of economics and statistics</jtitle><date>1983-02-01</date><risdate>1983</risdate><volume>65</volume><issue>1</issue><spage>149</spage><epage>153</epage><pages>149-153</pages><issn>0034-6535</issn><eissn>1530-9142</eissn><coden>RECSA9</coden><abstract>The hypothesis that service industry production is a cooperative effort using inputs supplied by firms and customers is investigated. Customer time is seen as a Hicks neutral input which uniformly increases the marginal productivity of all other factors. Simple queuing theory is used to develop the competitive market implications. A stochastic model is used to test the following hypotheses using data from the dental industry: 1. Customer time has a positive marginal product. 2. Firms employ the profit-maximizing level of customer time. Results support both hypotheses.</abstract><cop>Cambridge, Mass</cop><pub>North-Holland Publishing Company</pub><doi>10.2307/1924421</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6535
ispartof The review of economics and statistics, 1983-02, Vol.65 (1), p.149-153
issn 0034-6535
1530-9142
language eng
recordid cdi_proquest_journals_194655509
source Jstor Complete Legacy; Business Source Complete; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Capacity costs
Capital costs
Dentists
Economic models
Economic theory
Hypotheses
Marginal products
Marginal revenue products
Production
Production engineering
Production estimates
Production functions
Queuing theory
Service industries
Stochastic models
title Production in a Service Industry Using Customer Inputs: A Stochastic Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20in%20a%20Service%20Industry%20Using%20Customer%20Inputs:%20A%20Stochastic%20Model&rft.jtitle=The%20review%20of%20economics%20and%20statistics&rft.au=De%20Vany,%20Arthur%20S.&rft.date=1983-02-01&rft.volume=65&rft.issue=1&rft.spage=149&rft.epage=153&rft.pages=149-153&rft.issn=0034-6535&rft.eissn=1530-9142&rft.coden=RECSA9&rft_id=info:doi/10.2307/1924421&rft_dat=%3Cjstor_proqu%3E1924421%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290803597&rft_id=info:pmid/&rft_jstor_id=1924421&rfr_iscdi=true