An inexact proximal point method for solving generalized fractional programs

In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2008-09, Vol.42 (1), p.121-138
Hauptverfasser: Strodiot, Jean-Jacques, Crouzeix, Jean-Pierre, Ferland, Jacques A., Nguyen, Van Hien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 121
container_title Journal of global optimization
container_volume 42
creator Strodiot, Jean-Jacques
Crouzeix, Jean-Pierre
Ferland, Jacques A.
Nguyen, Van Hien
description In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these methods, at each iteration a regularized parametric problem is solved inexactly to obtain an approximation of the optimal value of the problem. Since the parametric problem is nonsmooth and convex, we propose to solve it by using a classical bundle method where the parameter is updated after each ‘serious step’. We mainly study two kinds of such steps, and we prove the convergence and the rate of convergence of each of the corresponding methods. Finally, we present some numerical experience to illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of each one.
doi_str_mv 10.1007/s10898-007-9270-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194648663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1519011001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-7e74ccdfa97e185a75cef1af0b1da57874cbde212e9db81f529d965fa7db1993</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLO4G7xOHdvHquIlVeLSu-XEdkiVxsVOUeDrcRQOXDjtaHdmdncQugV6D5SKhwRUKkkyJIoJSsYztAAuCsIUlOdoQRXjhFMKl-gqpT2lVEnOFmi77nHbu9HUAz7GMLYH0-FjaPsBH9zwHiz2IeIUus-2b3DjehdN13673I9Z04Z-4sfQRHNI1-jCmy65m9-6RLunx93mhWzfnl836y2pC-ADEU6s6tp6o4QDyY3gtfNgPK3AGi5knlbWMWBO2UqC50xZVXJvhK1AqWKJ7mbbvPfj5NKg9-EU8yFJg1qVK1mWRSbBTKpjSCk6r48xPxe_NFA9RabnyPQEp8j0mDVs1qTM7RsX_xj_K_oB_zdxFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194648663</pqid></control><display><type>article</type><title>An inexact proximal point method for solving generalized fractional programs</title><source>Springer Nature - Complete Springer Journals</source><creator>Strodiot, Jean-Jacques ; Crouzeix, Jean-Pierre ; Ferland, Jacques A. ; Nguyen, Van Hien</creator><creatorcontrib>Strodiot, Jean-Jacques ; Crouzeix, Jean-Pierre ; Ferland, Jacques A. ; Nguyen, Van Hien</creatorcontrib><description>In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these methods, at each iteration a regularized parametric problem is solved inexactly to obtain an approximation of the optimal value of the problem. Since the parametric problem is nonsmooth and convex, we propose to solve it by using a classical bundle method where the parameter is updated after each ‘serious step’. We mainly study two kinds of such steps, and we prove the convergence and the rate of convergence of each of the corresponding methods. Finally, we present some numerical experience to illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of each one.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-007-9270-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Approximation ; Computer Science ; Fractions ; Linear programming ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Regularization methods ; Studies</subject><ispartof>Journal of global optimization, 2008-09, Vol.42 (1), p.121-138</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-7e74ccdfa97e185a75cef1af0b1da57874cbde212e9db81f529d965fa7db1993</citedby><cites>FETCH-LOGICAL-c315t-7e74ccdfa97e185a75cef1af0b1da57874cbde212e9db81f529d965fa7db1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-007-9270-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-007-9270-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Strodiot, Jean-Jacques</creatorcontrib><creatorcontrib>Crouzeix, Jean-Pierre</creatorcontrib><creatorcontrib>Ferland, Jacques A.</creatorcontrib><creatorcontrib>Nguyen, Van Hien</creatorcontrib><title>An inexact proximal point method for solving generalized fractional programs</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these methods, at each iteration a regularized parametric problem is solved inexactly to obtain an approximation of the optimal value of the problem. Since the parametric problem is nonsmooth and convex, we propose to solve it by using a classical bundle method where the parameter is updated after each ‘serious step’. We mainly study two kinds of such steps, and we prove the convergence and the rate of convergence of each of the corresponding methods. Finally, we present some numerical experience to illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of each one.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Fractions</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Regularization methods</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLO4G7xOHdvHquIlVeLSu-XEdkiVxsVOUeDrcRQOXDjtaHdmdncQugV6D5SKhwRUKkkyJIoJSsYztAAuCsIUlOdoQRXjhFMKl-gqpT2lVEnOFmi77nHbu9HUAz7GMLYH0-FjaPsBH9zwHiz2IeIUus-2b3DjehdN13673I9Z04Z-4sfQRHNI1-jCmy65m9-6RLunx93mhWzfnl836y2pC-ADEU6s6tp6o4QDyY3gtfNgPK3AGi5knlbWMWBO2UqC50xZVXJvhK1AqWKJ7mbbvPfj5NKg9-EU8yFJg1qVK1mWRSbBTKpjSCk6r48xPxe_NFA9RabnyPQEp8j0mDVs1qTM7RsX_xj_K_oB_zdxFw</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Strodiot, Jean-Jacques</creator><creator>Crouzeix, Jean-Pierre</creator><creator>Ferland, Jacques A.</creator><creator>Nguyen, Van Hien</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080901</creationdate><title>An inexact proximal point method for solving generalized fractional programs</title><author>Strodiot, Jean-Jacques ; Crouzeix, Jean-Pierre ; Ferland, Jacques A. ; Nguyen, Van Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-7e74ccdfa97e185a75cef1af0b1da57874cbde212e9db81f529d965fa7db1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Fractions</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Regularization methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strodiot, Jean-Jacques</creatorcontrib><creatorcontrib>Crouzeix, Jean-Pierre</creatorcontrib><creatorcontrib>Ferland, Jacques A.</creatorcontrib><creatorcontrib>Nguyen, Van Hien</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strodiot, Jean-Jacques</au><au>Crouzeix, Jean-Pierre</au><au>Ferland, Jacques A.</au><au>Nguyen, Van Hien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inexact proximal point method for solving generalized fractional programs</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>42</volume><issue>1</issue><spage>121</spage><epage>138</epage><pages>121-138</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are Dinkelbach-type methods where a prox-regularization term is added to avoid the numerical difficulties arising when the solution of the problem is not unique. In these methods, at each iteration a regularized parametric problem is solved inexactly to obtain an approximation of the optimal value of the problem. Since the parametric problem is nonsmooth and convex, we propose to solve it by using a classical bundle method where the parameter is updated after each ‘serious step’. We mainly study two kinds of such steps, and we prove the convergence and the rate of convergence of each of the corresponding methods. Finally, we present some numerical experience to illustrate the behavior of the proposed algorithms, and we discuss the practical efficiency of each one.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-007-9270-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2008-09, Vol.42 (1), p.121-138
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_194648663
source Springer Nature - Complete Springer Journals
subjects Algorithms
Approximation
Computer Science
Fractions
Linear programming
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Real Functions
Regularization methods
Studies
title An inexact proximal point method for solving generalized fractional programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inexact%20proximal%20point%20method%20for%20solving%20generalized%20fractional%20programs&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Strodiot,%20Jean-Jacques&rft.date=2008-09-01&rft.volume=42&rft.issue=1&rft.spage=121&rft.epage=138&rft.pages=121-138&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-007-9270-x&rft_dat=%3Cproquest_cross%3E1519011001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194648663&rft_id=info:pmid/&rfr_iscdi=true