Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions
Recently Hachimi and Aghezzaf introduced the notion of (F, a, p, d)-type I functions, a new class of functions that unifies several concepts of generalized type I functions. Here, we extend the concepts of (F, a, p, d)-type I and generalized (F, a, p, d)-type I functions to the continuous case and w...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2006-02, Vol.34 (2), p.191-218 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | Journal of global optimization |
container_volume | 34 |
creator | Hachimi, Mohamed Aghezzaf, Brahim |
description | Recently Hachimi and Aghezzaf introduced the notion of (F, a, p, d)-type I functions, a new class of functions that unifies several concepts of generalized type I functions. Here, we extend the concepts of (F, a, p, d)-type I and generalized (F, a, p, d)-type I functions to the continuous case and we use these concepts to establish various sufficient optimality conditions and mixed duality results for multiobjective variational problems. Our results apparently generalize a fairly large number of sufficient optimality conditions and duality results previously obtained for multiobjective variational problems. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10898-005-1653-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194646759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>991055871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-b255d43c2c9ecde30ead575a2eef2ee00d8553277763ec8611e6772fe590694b3</originalsourceid><addsrcrecordid>eNotkFFLwzAQx4MoOKcfwLfge_WSNknzKNPNwUTB6WtM0ytmdO1MWkf99HbMh-OOP787jh8h1wxuGYC6iwxynScAImFSpAk_IRMm1DhoJk_JBDQXiQBg5-Qixg0A6FzwCfl866vKO4-NG6htSvrQ29p3A_UNfe7rzrfFBl3nf5B-2ODtGDS2pq-hLWrcRrr33RddYINhXPvFkq6HHdIlnfeNO7DxkpxVto549d-n5H3-uJ49JauXxXJ2v0ocV7xLCi5EmaWOO42uxBTQlkIJyxGrsQDKXIiUK6Vkii6XjKFUilcoNEidFemU3Bzv7kL73WPszKbtw_hrNExnMpNK6BFiR8iFNsaAldkFv7VhMAzMwaM5ejSjR3PwaHj6B22TZq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194646759</pqid></control><display><type>article</type><title>Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions</title><source>SpringerNature Journals</source><creator>Hachimi, Mohamed ; Aghezzaf, Brahim</creator><creatorcontrib>Hachimi, Mohamed ; Aghezzaf, Brahim</creatorcontrib><description>Recently Hachimi and Aghezzaf introduced the notion of (F, a, p, d)-type I functions, a new class of functions that unifies several concepts of generalized type I functions. Here, we extend the concepts of (F, a, p, d)-type I and generalized (F, a, p, d)-type I functions to the continuous case and we use these concepts to establish various sufficient optimality conditions and mixed duality results for multiobjective variational problems. Our results apparently generalize a fairly large number of sufficient optimality conditions and duality results previously obtained for multiobjective variational problems. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-005-1653-2</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Mathematical functions ; Optimization ; Studies</subject><ispartof>Journal of global optimization, 2006-02, Vol.34 (2), p.191-218</ispartof><rights>Springer 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-b255d43c2c9ecde30ead575a2eef2ee00d8553277763ec8611e6772fe590694b3</citedby><cites>FETCH-LOGICAL-c272t-b255d43c2c9ecde30ead575a2eef2ee00d8553277763ec8611e6772fe590694b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hachimi, Mohamed</creatorcontrib><creatorcontrib>Aghezzaf, Brahim</creatorcontrib><title>Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions</title><title>Journal of global optimization</title><description>Recently Hachimi and Aghezzaf introduced the notion of (F, a, p, d)-type I functions, a new class of functions that unifies several concepts of generalized type I functions. Here, we extend the concepts of (F, a, p, d)-type I and generalized (F, a, p, d)-type I functions to the continuous case and we use these concepts to establish various sufficient optimality conditions and mixed duality results for multiobjective variational problems. Our results apparently generalize a fairly large number of sufficient optimality conditions and duality results previously obtained for multiobjective variational problems. [PUBLICATION ABSTRACT]</description><subject>Mathematical functions</subject><subject>Optimization</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFFLwzAQx4MoOKcfwLfge_WSNknzKNPNwUTB6WtM0ytmdO1MWkf99HbMh-OOP787jh8h1wxuGYC6iwxynScAImFSpAk_IRMm1DhoJk_JBDQXiQBg5-Qixg0A6FzwCfl866vKO4-NG6htSvrQ29p3A_UNfe7rzrfFBl3nf5B-2ODtGDS2pq-hLWrcRrr33RddYINhXPvFkq6HHdIlnfeNO7DxkpxVto549d-n5H3-uJ49JauXxXJ2v0ocV7xLCi5EmaWOO42uxBTQlkIJyxGrsQDKXIiUK6Vkii6XjKFUilcoNEidFemU3Bzv7kL73WPszKbtw_hrNExnMpNK6BFiR8iFNsaAldkFv7VhMAzMwaM5ejSjR3PwaHj6B22TZq4</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Hachimi, Mohamed</creator><creator>Aghezzaf, Brahim</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060201</creationdate><title>Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions</title><author>Hachimi, Mohamed ; Aghezzaf, Brahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-b255d43c2c9ecde30ead575a2eef2ee00d8553277763ec8611e6772fe590694b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Mathematical functions</topic><topic>Optimization</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hachimi, Mohamed</creatorcontrib><creatorcontrib>Aghezzaf, Brahim</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hachimi, Mohamed</au><au>Aghezzaf, Brahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions</atitle><jtitle>Journal of global optimization</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>34</volume><issue>2</issue><spage>191</spage><epage>218</epage><pages>191-218</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Recently Hachimi and Aghezzaf introduced the notion of (F, a, p, d)-type I functions, a new class of functions that unifies several concepts of generalized type I functions. Here, we extend the concepts of (F, a, p, d)-type I and generalized (F, a, p, d)-type I functions to the continuous case and we use these concepts to establish various sufficient optimality conditions and mixed duality results for multiobjective variational problems. Our results apparently generalize a fairly large number of sufficient optimality conditions and duality results previously obtained for multiobjective variational problems. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10898-005-1653-2</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2006-02, Vol.34 (2), p.191-218 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_194646759 |
source | SpringerNature Journals |
subjects | Mathematical functions Optimization Studies |
title | Sufficiency and Duality in Multiobjective Variational Problems with Generalized Type I Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficiency%20and%20Duality%20in%20Multiobjective%20Variational%20Problems%20with%20Generalized%20Type%20I%20Functions&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Hachimi,%20Mohamed&rft.date=2006-02-01&rft.volume=34&rft.issue=2&rft.spage=191&rft.epage=218&rft.pages=191-218&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-005-1653-2&rft_dat=%3Cproquest_cross%3E991055871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194646759&rft_id=info:pmid/&rfr_iscdi=true |