Morphology-controlled silicon oxide particles produced by red wiggler worms
The preparation of silica particles by vermicomposting has gained increasing attention for use as an inventive alternative to conventional methods. The silica oxides obtained can be used in a number of technological applications. As of yet, these particles cannot be used efficiently because of the l...
Gespeichert in:
Veröffentlicht in: | Powder technology 2017-04, Vol.310, p.205-212 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | |
container_start_page | 205 |
container_title | Powder technology |
container_volume | 310 |
creator | Torres, Maykel González Muñoz, Susana Vargas Martínez, Andrea Ruíz Hernández, Valentina Segovia Saucedo, Alejandra Vargas Cervantes, Eric Reyes Talavera, Rogelio Rodríguez Rivera, Margarita del Pilar Carreón Castro, María |
description | The preparation of silica particles by vermicomposting has gained increasing attention for use as an inventive alternative to conventional methods. The silica oxides obtained can be used in a number of technological applications. As of yet, these particles cannot be used efficiently because of the lack of research into the relationship between the bioprocess and the shape and size of the particles. The aim of this study is to synthesize silica particles by red wiggler worms using three different grasses: Equisetum hyemale, Zea mays nixtamalized, and Otatea ramirezii and to characterize the obtained particles. However, it is unclear whether the use of diverse systems causes changes in the morphology of the final product. We found that silica particles can be produced by the three studied systems. Furthermore, each system showed a different polymorphism. We demonstrated that the new materials are mesoporous with a low surface area (9–22m2g−1), but each have one specific crystal arrangement. The silicas were characterized by several techniques, namely Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic-force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Brunauer–Emmett–Teller (BET) analysis.
[Display omitted]
•Low surface area (9–22m2g−1) SiO2 particles were fabricated by vermicomposting.•Three different grasses were used to produce the silica particles.•The samples were examined by FTIR, Raman, SEM, AFM, DLS and BET techniques.•The silicas' morphology depended on the type of grass supplied to the worms.•Mesoporous particles with mean particle sizes between 400 and 1450nm were obtained. |
doi_str_mv | 10.1016/j.powtec.2017.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946466188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591017300220</els_id><sourcerecordid>1946466188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-22c5787ad0e29196126a23c3b2a876b8836d318c813c8074c2d7bd4eaa3b06e53</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4DDwued30v2SbZiyDFL6x4UfAWdpO0Ztk2a7K19t-bsp6FgeHBzLz3hpBLhAIB-XVb9H43WF1QQFEAJuARmaAULGdUfhyTCQCj-axCOCVnMbYAwBnChDy_-NB_-s6v9rn2myH4rrMmi65zacz8jzM26-swON3ZmPXBm61OgmafhUQ7t1p1NmQ7H9bxnJws6y7aiz-ekvf7u7f5Y754fXia3y5yzQQOOaV6JqSoDVhaYcWR8poyzRpaS8EbKRk3DKWWyLQEUWpqRGNKW9esAW5nbEquxtx0zdfWxkG1fhs2aaXCquQl55hCpqQcVTr4GINdqj64dR32CkEdalOtGmtTh9oUYAIm281os-mDb2eDitrZTfrZBasHZbz7P-AXFk54Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946466188</pqid></control><display><type>article</type><title>Morphology-controlled silicon oxide particles produced by red wiggler worms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Torres, Maykel González ; Muñoz, Susana Vargas ; Martínez, Andrea Ruíz ; Hernández, Valentina Segovia ; Saucedo, Alejandra Vargas ; Cervantes, Eric Reyes ; Talavera, Rogelio Rodríguez ; Rivera, Margarita ; del Pilar Carreón Castro, María</creator><creatorcontrib>Torres, Maykel González ; Muñoz, Susana Vargas ; Martínez, Andrea Ruíz ; Hernández, Valentina Segovia ; Saucedo, Alejandra Vargas ; Cervantes, Eric Reyes ; Talavera, Rogelio Rodríguez ; Rivera, Margarita ; del Pilar Carreón Castro, María</creatorcontrib><description>The preparation of silica particles by vermicomposting has gained increasing attention for use as an inventive alternative to conventional methods. The silica oxides obtained can be used in a number of technological applications. As of yet, these particles cannot be used efficiently because of the lack of research into the relationship between the bioprocess and the shape and size of the particles. The aim of this study is to synthesize silica particles by red wiggler worms using three different grasses: Equisetum hyemale, Zea mays nixtamalized, and Otatea ramirezii and to characterize the obtained particles. However, it is unclear whether the use of diverse systems causes changes in the morphology of the final product. We found that silica particles can be produced by the three studied systems. Furthermore, each system showed a different polymorphism. We demonstrated that the new materials are mesoporous with a low surface area (9–22m2g−1), but each have one specific crystal arrangement. The silicas were characterized by several techniques, namely Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic-force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Brunauer–Emmett–Teller (BET) analysis.
[Display omitted]
•Low surface area (9–22m2g−1) SiO2 particles were fabricated by vermicomposting.•Three different grasses were used to produce the silica particles.•The samples were examined by FTIR, Raman, SEM, AFM, DLS and BET techniques.•The silicas' morphology depended on the type of grass supplied to the worms.•Mesoporous particles with mean particle sizes between 400 and 1450nm were obtained.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2017.01.011</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Atomic beam spectroscopy ; Atomic force microscopy ; Biological systems ; Composting ; Electron microscopy ; Fourier transforms ; Grasses ; Infrared spectroscopy ; Light scattering ; Morphology ; Oxides ; Particle physics ; Photon correlation spectroscopy ; Polymorphism ; Raman spectroscopy ; Scanning electron microscopy ; Scattering ; Silica ; Silica particles ; Silicon dioxide ; Silicon oxide ; Spectroscopy ; Spectrum analysis ; Vermicomposting ; Warm ; Worms</subject><ispartof>Powder technology, 2017-04, Vol.310, p.205-212</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-22c5787ad0e29196126a23c3b2a876b8836d318c813c8074c2d7bd4eaa3b06e53</citedby><cites>FETCH-LOGICAL-c371t-22c5787ad0e29196126a23c3b2a876b8836d318c813c8074c2d7bd4eaa3b06e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591017300220$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Torres, Maykel González</creatorcontrib><creatorcontrib>Muñoz, Susana Vargas</creatorcontrib><creatorcontrib>Martínez, Andrea Ruíz</creatorcontrib><creatorcontrib>Hernández, Valentina Segovia</creatorcontrib><creatorcontrib>Saucedo, Alejandra Vargas</creatorcontrib><creatorcontrib>Cervantes, Eric Reyes</creatorcontrib><creatorcontrib>Talavera, Rogelio Rodríguez</creatorcontrib><creatorcontrib>Rivera, Margarita</creatorcontrib><creatorcontrib>del Pilar Carreón Castro, María</creatorcontrib><title>Morphology-controlled silicon oxide particles produced by red wiggler worms</title><title>Powder technology</title><description>The preparation of silica particles by vermicomposting has gained increasing attention for use as an inventive alternative to conventional methods. The silica oxides obtained can be used in a number of technological applications. As of yet, these particles cannot be used efficiently because of the lack of research into the relationship between the bioprocess and the shape and size of the particles. The aim of this study is to synthesize silica particles by red wiggler worms using three different grasses: Equisetum hyemale, Zea mays nixtamalized, and Otatea ramirezii and to characterize the obtained particles. However, it is unclear whether the use of diverse systems causes changes in the morphology of the final product. We found that silica particles can be produced by the three studied systems. Furthermore, each system showed a different polymorphism. We demonstrated that the new materials are mesoporous with a low surface area (9–22m2g−1), but each have one specific crystal arrangement. The silicas were characterized by several techniques, namely Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic-force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Brunauer–Emmett–Teller (BET) analysis.
[Display omitted]
•Low surface area (9–22m2g−1) SiO2 particles were fabricated by vermicomposting.•Three different grasses were used to produce the silica particles.•The samples were examined by FTIR, Raman, SEM, AFM, DLS and BET techniques.•The silicas' morphology depended on the type of grass supplied to the worms.•Mesoporous particles with mean particle sizes between 400 and 1450nm were obtained.</description><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Biological systems</subject><subject>Composting</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Grasses</subject><subject>Infrared spectroscopy</subject><subject>Light scattering</subject><subject>Morphology</subject><subject>Oxides</subject><subject>Particle physics</subject><subject>Photon correlation spectroscopy</subject><subject>Polymorphism</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Scattering</subject><subject>Silica</subject><subject>Silica particles</subject><subject>Silicon dioxide</subject><subject>Silicon oxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vermicomposting</subject><subject>Warm</subject><subject>Worms</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4DDwued30v2SbZiyDFL6x4UfAWdpO0Ztk2a7K19t-bsp6FgeHBzLz3hpBLhAIB-XVb9H43WF1QQFEAJuARmaAULGdUfhyTCQCj-axCOCVnMbYAwBnChDy_-NB_-s6v9rn2myH4rrMmi65zacz8jzM26-swON3ZmPXBm61OgmafhUQ7t1p1NmQ7H9bxnJws6y7aiz-ekvf7u7f5Y754fXia3y5yzQQOOaV6JqSoDVhaYcWR8poyzRpaS8EbKRk3DKWWyLQEUWpqRGNKW9esAW5nbEquxtx0zdfWxkG1fhs2aaXCquQl55hCpqQcVTr4GINdqj64dR32CkEdalOtGmtTh9oUYAIm281os-mDb2eDitrZTfrZBasHZbz7P-AXFk54Rw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Torres, Maykel González</creator><creator>Muñoz, Susana Vargas</creator><creator>Martínez, Andrea Ruíz</creator><creator>Hernández, Valentina Segovia</creator><creator>Saucedo, Alejandra Vargas</creator><creator>Cervantes, Eric Reyes</creator><creator>Talavera, Rogelio Rodríguez</creator><creator>Rivera, Margarita</creator><creator>del Pilar Carreón Castro, María</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20170401</creationdate><title>Morphology-controlled silicon oxide particles produced by red wiggler worms</title><author>Torres, Maykel González ; Muñoz, Susana Vargas ; Martínez, Andrea Ruíz ; Hernández, Valentina Segovia ; Saucedo, Alejandra Vargas ; Cervantes, Eric Reyes ; Talavera, Rogelio Rodríguez ; Rivera, Margarita ; del Pilar Carreón Castro, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-22c5787ad0e29196126a23c3b2a876b8836d318c813c8074c2d7bd4eaa3b06e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Biological systems</topic><topic>Composting</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Grasses</topic><topic>Infrared spectroscopy</topic><topic>Light scattering</topic><topic>Morphology</topic><topic>Oxides</topic><topic>Particle physics</topic><topic>Photon correlation spectroscopy</topic><topic>Polymorphism</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Scattering</topic><topic>Silica</topic><topic>Silica particles</topic><topic>Silicon dioxide</topic><topic>Silicon oxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vermicomposting</topic><topic>Warm</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres, Maykel González</creatorcontrib><creatorcontrib>Muñoz, Susana Vargas</creatorcontrib><creatorcontrib>Martínez, Andrea Ruíz</creatorcontrib><creatorcontrib>Hernández, Valentina Segovia</creatorcontrib><creatorcontrib>Saucedo, Alejandra Vargas</creatorcontrib><creatorcontrib>Cervantes, Eric Reyes</creatorcontrib><creatorcontrib>Talavera, Rogelio Rodríguez</creatorcontrib><creatorcontrib>Rivera, Margarita</creatorcontrib><creatorcontrib>del Pilar Carreón Castro, María</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Maykel González</au><au>Muñoz, Susana Vargas</au><au>Martínez, Andrea Ruíz</au><au>Hernández, Valentina Segovia</au><au>Saucedo, Alejandra Vargas</au><au>Cervantes, Eric Reyes</au><au>Talavera, Rogelio Rodríguez</au><au>Rivera, Margarita</au><au>del Pilar Carreón Castro, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-controlled silicon oxide particles produced by red wiggler worms</atitle><jtitle>Powder technology</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>310</volume><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>The preparation of silica particles by vermicomposting has gained increasing attention for use as an inventive alternative to conventional methods. The silica oxides obtained can be used in a number of technological applications. As of yet, these particles cannot be used efficiently because of the lack of research into the relationship between the bioprocess and the shape and size of the particles. The aim of this study is to synthesize silica particles by red wiggler worms using three different grasses: Equisetum hyemale, Zea mays nixtamalized, and Otatea ramirezii and to characterize the obtained particles. However, it is unclear whether the use of diverse systems causes changes in the morphology of the final product. We found that silica particles can be produced by the three studied systems. Furthermore, each system showed a different polymorphism. We demonstrated that the new materials are mesoporous with a low surface area (9–22m2g−1), but each have one specific crystal arrangement. The silicas were characterized by several techniques, namely Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic-force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Brunauer–Emmett–Teller (BET) analysis.
[Display omitted]
•Low surface area (9–22m2g−1) SiO2 particles were fabricated by vermicomposting.•Three different grasses were used to produce the silica particles.•The samples were examined by FTIR, Raman, SEM, AFM, DLS and BET techniques.•The silicas' morphology depended on the type of grass supplied to the worms.•Mesoporous particles with mean particle sizes between 400 and 1450nm were obtained.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2017.01.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2017-04, Vol.310, p.205-212 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_journals_1946466188 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic beam spectroscopy Atomic force microscopy Biological systems Composting Electron microscopy Fourier transforms Grasses Infrared spectroscopy Light scattering Morphology Oxides Particle physics Photon correlation spectroscopy Polymorphism Raman spectroscopy Scanning electron microscopy Scattering Silica Silica particles Silicon dioxide Silicon oxide Spectroscopy Spectrum analysis Vermicomposting Warm Worms |
title | Morphology-controlled silicon oxide particles produced by red wiggler worms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-controlled%20silicon%20oxide%20particles%20produced%20by%20red%20wiggler%20worms&rft.jtitle=Powder%20technology&rft.au=Torres,%20Maykel%20Gonz%C3%A1lez&rft.date=2017-04-01&rft.volume=310&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2017.01.011&rft_dat=%3Cproquest_cross%3E1946466188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946466188&rft_id=info:pmid/&rft_els_id=S0032591017300220&rfr_iscdi=true |