Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing

We consider the problem of optimally covering plane domains by a given number of circles. The mathematical modeling of this problem leads to a min-max-min formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2005-03, Vol.31 (3), p.493-504
Hauptverfasser: Xavier, Adilson Elias, Oliveira, Antonio Alberto Fernandes De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 3
container_start_page 493
container_title Journal of global optimization
container_volume 31
creator Xavier, Adilson Elias
Oliveira, Antonio Alberto Fernandes De
description We consider the problem of optimally covering plane domains by a given number of circles. The mathematical modeling of this problem leads to a min-max-min formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to overcome these difficulties, we have developed a smoothing strategy using a special class C ? smoothing function. The final solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original problem. The use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essential of the method is presented. For the purpose of illustrating both the actual working and the potentialities of the method, a set of computational results is presented. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10898-004-0737-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194645719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>974783021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-d7c412eb4df47fc43740facd8fd47191f119e413615e36194414660374cdde603</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmXwA7hF3AN2mzbNEZWxIU0aEh_XqE0T6NQ2JemQ9u_JNC62D49fyw8htwj3CCAeAkIpSwbAGYhMsPKMJJiLjKUSi3OSgExzlgPgJbkKYQcAsszThCy309wNdU8r92t8N35RZ-lrX4-GPrmh7sZAmwOtOq97E-hnV9P1YTK-cX2n6dvg3Pwdl67Jha37YG7--4J8PC_fqzXbbFcv1eOG6VSkM2uF5piahreWC6t5JjjYWrelbblAiRZRGo5ZgbmJRXKOvCggYrptTRwW5O6UO3n3szdhVju392M8qSJd8DymRAhPkPYuBG-smnx80R8UgjrKUidZKspSR1mqzP4APoVbPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194645719</pqid></control><display><type>article</type><title>Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing</title><source>SpringerNature Journals</source><creator>Xavier, Adilson Elias ; Oliveira, Antonio Alberto Fernandes De</creator><creatorcontrib>Xavier, Adilson Elias ; Oliveira, Antonio Alberto Fernandes De</creatorcontrib><description>We consider the problem of optimally covering plane domains by a given number of circles. The mathematical modeling of this problem leads to a min-max-min formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to overcome these difficulties, we have developed a smoothing strategy using a special class C ? smoothing function. The final solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original problem. The use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essential of the method is presented. For the purpose of illustrating both the actual working and the potentialities of the method, a set of computational results is presented. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-004-0737-8</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Mathematical models ; Optimization algorithms ; Studies</subject><ispartof>Journal of global optimization, 2005-03, Vol.31 (3), p.493-504</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-d7c412eb4df47fc43740facd8fd47191f119e413615e36194414660374cdde603</citedby><cites>FETCH-LOGICAL-c272t-d7c412eb4df47fc43740facd8fd47191f119e413615e36194414660374cdde603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xavier, Adilson Elias</creatorcontrib><creatorcontrib>Oliveira, Antonio Alberto Fernandes De</creatorcontrib><title>Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing</title><title>Journal of global optimization</title><description>We consider the problem of optimally covering plane domains by a given number of circles. The mathematical modeling of this problem leads to a min-max-min formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to overcome these difficulties, we have developed a smoothing strategy using a special class C ? smoothing function. The final solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original problem. The use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essential of the method is presented. For the purpose of illustrating both the actual working and the potentialities of the method, a set of computational results is presented. [PUBLICATION ABSTRACT]</description><subject>Mathematical models</subject><subject>Optimization algorithms</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1PwzAMhiMEEmXwA7hF3AN2mzbNEZWxIU0aEh_XqE0T6NQ2JemQ9u_JNC62D49fyw8htwj3CCAeAkIpSwbAGYhMsPKMJJiLjKUSi3OSgExzlgPgJbkKYQcAsszThCy309wNdU8r92t8N35RZ-lrX4-GPrmh7sZAmwOtOq97E-hnV9P1YTK-cX2n6dvg3Pwdl67Jha37YG7--4J8PC_fqzXbbFcv1eOG6VSkM2uF5piahreWC6t5JjjYWrelbblAiRZRGo5ZgbmJRXKOvCggYrptTRwW5O6UO3n3szdhVju392M8qSJd8DymRAhPkPYuBG-smnx80R8UgjrKUidZKspSR1mqzP4APoVbPw</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Xavier, Adilson Elias</creator><creator>Oliveira, Antonio Alberto Fernandes De</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20050301</creationdate><title>Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing</title><author>Xavier, Adilson Elias ; Oliveira, Antonio Alberto Fernandes De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-d7c412eb4df47fc43740facd8fd47191f119e413615e36194414660374cdde603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Mathematical models</topic><topic>Optimization algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xavier, Adilson Elias</creatorcontrib><creatorcontrib>Oliveira, Antonio Alberto Fernandes De</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xavier, Adilson Elias</au><au>Oliveira, Antonio Alberto Fernandes De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing</atitle><jtitle>Journal of global optimization</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>31</volume><issue>3</issue><spage>493</spage><epage>504</epage><pages>493-504</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We consider the problem of optimally covering plane domains by a given number of circles. The mathematical modeling of this problem leads to a min-max-min formulation which, in addition to its intrinsic multi-level nature, has the significant characteristic of being non-differentiable. In order to overcome these difficulties, we have developed a smoothing strategy using a special class C ? smoothing function. The final solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original problem. The use of this technique, called Hyperbolic Smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essential of the method is presented. For the purpose of illustrating both the actual working and the potentialities of the method, a set of computational results is presented. [PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10898-004-0737-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2005-03, Vol.31 (3), p.493-504
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_194645719
source SpringerNature Journals
subjects Mathematical models
Optimization algorithms
Studies
title Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Covering%20of%20Plane%20Domains%20by%20Circles%20Via%20Hyperbolic%20Smoothing&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Xavier,%20Adilson%20Elias&rft.date=2005-03-01&rft.volume=31&rft.issue=3&rft.spage=493&rft.epage=504&rft.pages=493-504&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-004-0737-8&rft_dat=%3Cproquest_cross%3E974783021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194645719&rft_id=info:pmid/&rfr_iscdi=true