Potentialities of dark fermentation effluents as substrates for microalgae growth: A review

•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process biochemistry (1991) 2016-11, Vol.51 (11), p.1843-1854
Hauptverfasser: Turon, V., Trably, E., Fouilland, E., Steyer, J-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1854
container_issue 11
container_start_page 1843
container_title Process biochemistry (1991)
container_volume 51
creator Turon, V.
Trably, E.
Fouilland, E.
Steyer, J-P.
description •Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF. In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3gL−1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.
doi_str_mv 10.1016/j.procbio.2016.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946433981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135951131630068X</els_id><sourcerecordid>1946433981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-ghBw3Zo0bdO6kUG8wYAudOUipLmMqZ1mTFIH394zzOxdnQv_ufwfQpeU5JTQ-rrPN8Grzvm8gDInLCe0OUIz2nCWsaJtjiFnVZtVlLJTdBZjTwijlJIZ-nj1yYzJycElZyL2FmsZvrA1YQ19mZwfsbF2mKCKWEYcpy6mIBOIrQ947VTwclhJg1fBb9PnDV7gYH6c2Z6jEyuHaC4OcY7eH-7f7p6y5cvj891imamSs5QVvOW6NRW3nZRMFVzXmkpbElp0la1q1nElu0YTZbUGrSzKWtZlbSGnDViao6v9XsDwPZmYRO-nMMJJQduyLhlrm52q2qvg3xiDsWIT3FqGX0GJ2HEUvThwFDuOgjABHGHudj9nwALYCiIqZ0ZltAtGJaG9-2fDHw_ff-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946433981</pqid></control><display><type>article</type><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><source>Elsevier ScienceDirect Journals</source><creator>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</creator><creatorcontrib>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</creatorcontrib><description>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF. In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (&gt;3gL−1), with a high acetate:butyrate ratio (&gt;2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (&lt;1) and/or high total metabolites concentrations (&gt;10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2016.03.018</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Acetic acid ; Acidogenesis ; Algae ; Bacteria ; Biofuels ; Biohydrogen ; Biotic factors ; Coupling ; Cultivation ; Dark fermentation ; Effluents ; Fatty acids ; Feasibility studies ; Fermentation ; Heterotrophy ; Hydrogen ; Lipids ; Metabolites ; Microalgae ; pH effects ; Reviews ; Substrates ; Volatile fatty acids</subject><ispartof>Process biochemistry (1991), 2016-11, Vol.51 (11), p.1843-1854</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</citedby><cites>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135951131630068X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Turon, V.</creatorcontrib><creatorcontrib>Trably, E.</creatorcontrib><creatorcontrib>Fouilland, E.</creatorcontrib><creatorcontrib>Steyer, J-P.</creatorcontrib><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><title>Process biochemistry (1991)</title><description>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF. In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (&gt;3gL−1), with a high acetate:butyrate ratio (&gt;2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (&lt;1) and/or high total metabolites concentrations (&gt;10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</description><subject>Acetic acid</subject><subject>Acidogenesis</subject><subject>Algae</subject><subject>Bacteria</subject><subject>Biofuels</subject><subject>Biohydrogen</subject><subject>Biotic factors</subject><subject>Coupling</subject><subject>Cultivation</subject><subject>Dark fermentation</subject><subject>Effluents</subject><subject>Fatty acids</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Heterotrophy</subject><subject>Hydrogen</subject><subject>Lipids</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>pH effects</subject><subject>Reviews</subject><subject>Substrates</subject><subject>Volatile fatty acids</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-ghBw3Zo0bdO6kUG8wYAudOUipLmMqZ1mTFIH394zzOxdnQv_ufwfQpeU5JTQ-rrPN8Grzvm8gDInLCe0OUIz2nCWsaJtjiFnVZtVlLJTdBZjTwijlJIZ-nj1yYzJycElZyL2FmsZvrA1YQ19mZwfsbF2mKCKWEYcpy6mIBOIrQ947VTwclhJg1fBb9PnDV7gYH6c2Z6jEyuHaC4OcY7eH-7f7p6y5cvj891imamSs5QVvOW6NRW3nZRMFVzXmkpbElp0la1q1nElu0YTZbUGrSzKWtZlbSGnDViao6v9XsDwPZmYRO-nMMJJQduyLhlrm52q2qvg3xiDsWIT3FqGX0GJ2HEUvThwFDuOgjABHGHudj9nwALYCiIqZ0ZltAtGJaG9-2fDHw_ff-k</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Turon, V.</creator><creator>Trably, E.</creator><creator>Fouilland, E.</creator><creator>Steyer, J-P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20161101</creationdate><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><author>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetic acid</topic><topic>Acidogenesis</topic><topic>Algae</topic><topic>Bacteria</topic><topic>Biofuels</topic><topic>Biohydrogen</topic><topic>Biotic factors</topic><topic>Coupling</topic><topic>Cultivation</topic><topic>Dark fermentation</topic><topic>Effluents</topic><topic>Fatty acids</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Heterotrophy</topic><topic>Hydrogen</topic><topic>Lipids</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>pH effects</topic><topic>Reviews</topic><topic>Substrates</topic><topic>Volatile fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turon, V.</creatorcontrib><creatorcontrib>Trably, E.</creatorcontrib><creatorcontrib>Fouilland, E.</creatorcontrib><creatorcontrib>Steyer, J-P.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turon, V.</au><au>Trably, E.</au><au>Fouilland, E.</au><au>Steyer, J-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</atitle><jtitle>Process biochemistry (1991)</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>1843</spage><epage>1854</epage><pages>1843-1854</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF. In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (&gt;3gL−1), with a high acetate:butyrate ratio (&gt;2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (&lt;1) and/or high total metabolites concentrations (&gt;10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.procbio.2016.03.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-5113
ispartof Process biochemistry (1991), 2016-11, Vol.51 (11), p.1843-1854
issn 1359-5113
1873-3298
language eng
recordid cdi_proquest_journals_1946433981
source Elsevier ScienceDirect Journals
subjects Acetic acid
Acidogenesis
Algae
Bacteria
Biofuels
Biohydrogen
Biotic factors
Coupling
Cultivation
Dark fermentation
Effluents
Fatty acids
Feasibility studies
Fermentation
Heterotrophy
Hydrogen
Lipids
Metabolites
Microalgae
pH effects
Reviews
Substrates
Volatile fatty acids
title Potentialities of dark fermentation effluents as substrates for microalgae growth: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potentialities%20of%20dark%20fermentation%20effluents%20as%20substrates%20for%20microalgae%20growth:%20A%20review&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Turon,%20V.&rft.date=2016-11-01&rft.volume=51&rft.issue=11&rft.spage=1843&rft.epage=1854&rft.pages=1843-1854&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2016.03.018&rft_dat=%3Cproquest_cross%3E1946433981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946433981&rft_id=info:pmid/&rft_els_id=S135951131630068X&rfr_iscdi=true