Potentialities of dark fermentation effluents as substrates for microalgae growth: A review
•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined. In...
Gespeichert in:
Veröffentlicht in: | Process biochemistry (1991) 2016-11, Vol.51 (11), p.1843-1854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | 11 |
container_start_page | 1843 |
container_title | Process biochemistry (1991) |
container_volume | 51 |
creator | Turon, V. Trably, E. Fouilland, E. Steyer, J-P. |
description | •Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined.
In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF.
In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3gL−1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth. |
doi_str_mv | 10.1016/j.procbio.2016.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946433981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135951131630068X</els_id><sourcerecordid>1946433981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-ghBw3Zo0bdO6kUG8wYAudOUipLmMqZ1mTFIH394zzOxdnQv_ufwfQpeU5JTQ-rrPN8Grzvm8gDInLCe0OUIz2nCWsaJtjiFnVZtVlLJTdBZjTwijlJIZ-nj1yYzJycElZyL2FmsZvrA1YQ19mZwfsbF2mKCKWEYcpy6mIBOIrQ947VTwclhJg1fBb9PnDV7gYH6c2Z6jEyuHaC4OcY7eH-7f7p6y5cvj891imamSs5QVvOW6NRW3nZRMFVzXmkpbElp0la1q1nElu0YTZbUGrSzKWtZlbSGnDViao6v9XsDwPZmYRO-nMMJJQduyLhlrm52q2qvg3xiDsWIT3FqGX0GJ2HEUvThwFDuOgjABHGHudj9nwALYCiIqZ0ZltAtGJaG9-2fDHw_ff-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946433981</pqid></control><display><type>article</type><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><source>Elsevier ScienceDirect Journals</source><creator>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</creator><creatorcontrib>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</creatorcontrib><description>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined.
In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF.
In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3gL−1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (<1) and/or high total metabolites concentrations (>10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2016.03.018</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Acetic acid ; Acidogenesis ; Algae ; Bacteria ; Biofuels ; Biohydrogen ; Biotic factors ; Coupling ; Cultivation ; Dark fermentation ; Effluents ; Fatty acids ; Feasibility studies ; Fermentation ; Heterotrophy ; Hydrogen ; Lipids ; Metabolites ; Microalgae ; pH effects ; Reviews ; Substrates ; Volatile fatty acids</subject><ispartof>Process biochemistry (1991), 2016-11, Vol.51 (11), p.1843-1854</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</citedby><cites>FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135951131630068X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Turon, V.</creatorcontrib><creatorcontrib>Trably, E.</creatorcontrib><creatorcontrib>Fouilland, E.</creatorcontrib><creatorcontrib>Steyer, J-P.</creatorcontrib><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><title>Process biochemistry (1991)</title><description>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined.
In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF.
In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3gL−1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (<1) and/or high total metabolites concentrations (>10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</description><subject>Acetic acid</subject><subject>Acidogenesis</subject><subject>Algae</subject><subject>Bacteria</subject><subject>Biofuels</subject><subject>Biohydrogen</subject><subject>Biotic factors</subject><subject>Coupling</subject><subject>Cultivation</subject><subject>Dark fermentation</subject><subject>Effluents</subject><subject>Fatty acids</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Heterotrophy</subject><subject>Hydrogen</subject><subject>Lipids</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>pH effects</subject><subject>Reviews</subject><subject>Substrates</subject><subject>Volatile fatty acids</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-ghBw3Zo0bdO6kUG8wYAudOUipLmMqZ1mTFIH394zzOxdnQv_ufwfQpeU5JTQ-rrPN8Grzvm8gDInLCe0OUIz2nCWsaJtjiFnVZtVlLJTdBZjTwijlJIZ-nj1yYzJycElZyL2FmsZvrA1YQ19mZwfsbF2mKCKWEYcpy6mIBOIrQ947VTwclhJg1fBb9PnDV7gYH6c2Z6jEyuHaC4OcY7eH-7f7p6y5cvj891imamSs5QVvOW6NRW3nZRMFVzXmkpbElp0la1q1nElu0YTZbUGrSzKWtZlbSGnDViao6v9XsDwPZmYRO-nMMJJQduyLhlrm52q2qvg3xiDsWIT3FqGX0GJ2HEUvThwFDuOgjABHGHudj9nwALYCiIqZ0ZltAtGJaG9-2fDHw_ff-k</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Turon, V.</creator><creator>Trably, E.</creator><creator>Fouilland, E.</creator><creator>Steyer, J-P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20161101</creationdate><title>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</title><author>Turon, V. ; Trably, E. ; Fouilland, E. ; Steyer, J-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-2797d9e57fbaa3c27d6d1af4012b5f563b7cab8d0cfdd797a246a646f79718113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetic acid</topic><topic>Acidogenesis</topic><topic>Algae</topic><topic>Bacteria</topic><topic>Biofuels</topic><topic>Biohydrogen</topic><topic>Biotic factors</topic><topic>Coupling</topic><topic>Cultivation</topic><topic>Dark fermentation</topic><topic>Effluents</topic><topic>Fatty acids</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Heterotrophy</topic><topic>Hydrogen</topic><topic>Lipids</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>pH effects</topic><topic>Reviews</topic><topic>Substrates</topic><topic>Volatile fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turon, V.</creatorcontrib><creatorcontrib>Trably, E.</creatorcontrib><creatorcontrib>Fouilland, E.</creatorcontrib><creatorcontrib>Steyer, J-P.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turon, V.</au><au>Trably, E.</au><au>Fouilland, E.</au><au>Steyer, J-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potentialities of dark fermentation effluents as substrates for microalgae growth: A review</atitle><jtitle>Process biochemistry (1991)</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>1843</spage><epage>1854</epage><pages>1843-1854</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>•Coupling dark fermentation and microalgae production in a biorefinery concept.•The broad range of fermentation metabolites production is explained.•The use of fermentation metabolites as substrates for microalgae is discussed.•The challenges and prospects of this promising coupling are outlined.
In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF.
In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3gL−1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (<1) and/or high total metabolites concentrations (>10gL−1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.procbio.2016.03.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-5113 |
ispartof | Process biochemistry (1991), 2016-11, Vol.51 (11), p.1843-1854 |
issn | 1359-5113 1873-3298 |
language | eng |
recordid | cdi_proquest_journals_1946433981 |
source | Elsevier ScienceDirect Journals |
subjects | Acetic acid Acidogenesis Algae Bacteria Biofuels Biohydrogen Biotic factors Coupling Cultivation Dark fermentation Effluents Fatty acids Feasibility studies Fermentation Heterotrophy Hydrogen Lipids Metabolites Microalgae pH effects Reviews Substrates Volatile fatty acids |
title | Potentialities of dark fermentation effluents as substrates for microalgae growth: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potentialities%20of%20dark%20fermentation%20effluents%20as%20substrates%20for%20microalgae%20growth:%20A%20review&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Turon,%20V.&rft.date=2016-11-01&rft.volume=51&rft.issue=11&rft.spage=1843&rft.epage=1854&rft.pages=1843-1854&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2016.03.018&rft_dat=%3Cproquest_cross%3E1946433981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946433981&rft_id=info:pmid/&rft_els_id=S135951131630068X&rfr_iscdi=true |