Predictive modelling of the granulation process using a systems-engineering approach

The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2016-11, Vol.302, p.265-274
Hauptverfasser: AlAlaween, Wafa' H., Mahfouf, Mahdi, Salman, Agba D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 265
container_title Powder technology
container_volume 302
creator AlAlaween, Wafa' H.
Mahfouf, Mahdi
Salman, Agba D.
description The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction. [Display omitted] •An integrated network model is developed for high shear granulation using acquired real data.•Deterministic/stochastic modelling approaches are proposed, developed and implemented.•The model performance is improved using a Gaussian mixture model.•The modelling framework is validated in a laboratory scale.•Accurate output predictions are obtained for high shear granulation.
doi_str_mv 10.1016/j.powtec.2016.08.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946433719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591016305319</els_id><sourcerecordid>1946433719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-73fb2710ffbc954b2402eab5c0a312912ee8426fd0712ae440a4510c74a268ea3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfsKCHFbyFNJ3upnTbmqTKfnuz1rOnYYb_g_kRck0hoUCz2zYZh2-POmFhS6BIQJQnZEGLnMecFR-nZAHAWZyWFM7JhXMtAGScwoJs3izWRnvzhdF-qLHrTL-NhibyO4y2VvVTp7wZ-mi0g0bnoskdBSpyB-dx72Lst6ZHtL_XMaiU3l2Ss0Z1Dq_-5pK8Pz5sVs_x-vXpZXW_jjUvwMc5byqWU2iaSpepqJgAhqpKNShOWUkZYiFY1tSQU6ZQCFAipaBzoVhWoOJLcjPnhtrPCZ2X7TDZPlRKWopMcJ7TMqjErNJ2cM5iI0dr9soeJAV55CdbOfOTR34SChn4BdvdbMPwwZdBK5022OuAy6L2sh7M_wE_YT98DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946433719</pqid></control><display><type>article</type><title>Predictive modelling of the granulation process using a systems-engineering approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>AlAlaween, Wafa' H. ; Mahfouf, Mahdi ; Salman, Agba D.</creator><creatorcontrib>AlAlaween, Wafa' H. ; Mahfouf, Mahdi ; Salman, Agba D.</creatorcontrib><description>The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction. [Display omitted] •An integrated network model is developed for high shear granulation using acquired real data.•Deterministic/stochastic modelling approaches are proposed, developed and implemented.•The model performance is improved using a Gaussian mixture model.•The modelling framework is validated in a laboratory scale.•Accurate output predictions are obtained for high shear granulation.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2016.08.049</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Artificial intelligence ; Ensemble model ; Gaussian mixture model ; Granular materials ; Granulation ; High shear granulation ; Industrial applications ; Integrated network ; Mathematical models ; Modelling ; Optimization ; Prediction models ; Product quality ; Radial basis function</subject><ispartof>Powder technology, 2016-11, Vol.302, p.265-274</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-73fb2710ffbc954b2402eab5c0a312912ee8426fd0712ae440a4510c74a268ea3</citedby><cites>FETCH-LOGICAL-c380t-73fb2710ffbc954b2402eab5c0a312912ee8426fd0712ae440a4510c74a268ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2016.08.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>AlAlaween, Wafa' H.</creatorcontrib><creatorcontrib>Mahfouf, Mahdi</creatorcontrib><creatorcontrib>Salman, Agba D.</creatorcontrib><title>Predictive modelling of the granulation process using a systems-engineering approach</title><title>Powder technology</title><description>The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction. [Display omitted] •An integrated network model is developed for high shear granulation using acquired real data.•Deterministic/stochastic modelling approaches are proposed, developed and implemented.•The model performance is improved using a Gaussian mixture model.•The modelling framework is validated in a laboratory scale.•Accurate output predictions are obtained for high shear granulation.</description><subject>Artificial intelligence</subject><subject>Ensemble model</subject><subject>Gaussian mixture model</subject><subject>Granular materials</subject><subject>Granulation</subject><subject>High shear granulation</subject><subject>Industrial applications</subject><subject>Integrated network</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Product quality</subject><subject>Radial basis function</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfsKCHFbyFNJ3upnTbmqTKfnuz1rOnYYb_g_kRck0hoUCz2zYZh2-POmFhS6BIQJQnZEGLnMecFR-nZAHAWZyWFM7JhXMtAGScwoJs3izWRnvzhdF-qLHrTL-NhibyO4y2VvVTp7wZ-mi0g0bnoskdBSpyB-dx72Lst6ZHtL_XMaiU3l2Ss0Z1Dq_-5pK8Pz5sVs_x-vXpZXW_jjUvwMc5byqWU2iaSpepqJgAhqpKNShOWUkZYiFY1tSQU6ZQCFAipaBzoVhWoOJLcjPnhtrPCZ2X7TDZPlRKWopMcJ7TMqjErNJ2cM5iI0dr9soeJAV55CdbOfOTR34SChn4BdvdbMPwwZdBK5022OuAy6L2sh7M_wE_YT98DA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>AlAlaween, Wafa' H.</creator><creator>Mahfouf, Mahdi</creator><creator>Salman, Agba D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>201611</creationdate><title>Predictive modelling of the granulation process using a systems-engineering approach</title><author>AlAlaween, Wafa' H. ; Mahfouf, Mahdi ; Salman, Agba D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-73fb2710ffbc954b2402eab5c0a312912ee8426fd0712ae440a4510c74a268ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial intelligence</topic><topic>Ensemble model</topic><topic>Gaussian mixture model</topic><topic>Granular materials</topic><topic>Granulation</topic><topic>High shear granulation</topic><topic>Industrial applications</topic><topic>Integrated network</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Product quality</topic><topic>Radial basis function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AlAlaween, Wafa' H.</creatorcontrib><creatorcontrib>Mahfouf, Mahdi</creatorcontrib><creatorcontrib>Salman, Agba D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AlAlaween, Wafa' H.</au><au>Mahfouf, Mahdi</au><au>Salman, Agba D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modelling of the granulation process using a systems-engineering approach</atitle><jtitle>Powder technology</jtitle><date>2016-11</date><risdate>2016</risdate><volume>302</volume><spage>265</spage><epage>274</epage><pages>265-274</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction. [Display omitted] •An integrated network model is developed for high shear granulation using acquired real data.•Deterministic/stochastic modelling approaches are proposed, developed and implemented.•The model performance is improved using a Gaussian mixture model.•The modelling framework is validated in a laboratory scale.•Accurate output predictions are obtained for high shear granulation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2016.08.049</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2016-11, Vol.302, p.265-274
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_1946433719
source Elsevier ScienceDirect Journals Complete
subjects Artificial intelligence
Ensemble model
Gaussian mixture model
Granular materials
Granulation
High shear granulation
Industrial applications
Integrated network
Mathematical models
Modelling
Optimization
Prediction models
Product quality
Radial basis function
title Predictive modelling of the granulation process using a systems-engineering approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modelling%20of%20the%20granulation%20process%20using%20a%20systems-engineering%20approach&rft.jtitle=Powder%20technology&rft.au=AlAlaween,%20Wafa'%20H.&rft.date=2016-11&rft.volume=302&rft.spage=265&rft.epage=274&rft.pages=265-274&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2016.08.049&rft_dat=%3Cproquest_cross%3E1946433719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946433719&rft_id=info:pmid/&rft_els_id=S0032591016305319&rfr_iscdi=true