Oleoplaning droplets on lubricated surfaces

Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2017-10, Vol.13 (10), p.1020-1025
Hauptverfasser: Daniel, Dan, Timonen, Jaakko V. I., Li, Ruoping, Velling, Seneca J., Aizenberg, Joanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1025
container_issue 10
container_start_page 1020
container_title Nature physics
container_volume 13
creator Daniel, Dan
Timonen, Jaakko V. I.
Li, Ruoping
Velling, Seneca J.
Aizenberg, Joanna
description Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle
doi_str_mv 10.1038/nphys4177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946274232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946274232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-83b94c78a99f0090ca9b54fc9b4dfd18844be2af012958accdf4a6776384c1543</originalsourceid><addsrcrecordid>eNpl0EtLxDAUBeAgCo6jC_9BwZVKNY_bJlnK4AsGZqPrkKbJ2KGmNbddzL-3UhkEV_csPs6FQ8glo3eMCnUf-489ApPyiCyYhCLnoNjxIUtxSs4Qd5QCL5lYkNtN67u-tbGJ26xOU_QDZl3M2rFKjbODrzMcU7DO4zk5CbZFf_F7l-T96fFt9ZKvN8-vq4d17oTgQ65EpcFJZbUOlGrqrK4KCE5XUIeaKQVQeW4DZVwXyjpXB7CllKVQ4FgBYkmu5t4-dV-jx8HsujHF6aVhGkougQs-qetZudQhJh9Mn5pPm_aGUfOzhTlsMdmb2eJk4tanP43_8DdSvWAT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946274232</pqid></control><display><type>article</type><title>Oleoplaning droplets on lubricated surfaces</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Daniel, Dan ; Timonen, Jaakko V. I. ; Li, Ruoping ; Velling, Seneca J. ; Aizenberg, Joanna</creator><creatorcontrib>Daniel, Dan ; Timonen, Jaakko V. I. ; Li, Ruoping ; Velling, Seneca J. ; Aizenberg, Joanna</creatorcontrib><description>Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle &lt;5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau–Levich–Derjaguin law. The droplet is therefore oleoplaning—akin to tyres hydroplaning on a wet road—with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design. Lubricated surfaces are known to display extreme liquid repellency. Such behaviour is now confirmed to be due to the formation of a film between the surface and the repelled liquid, with a thickness profile following the Landau–Levich–Derjaguin law.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4177</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 639/301/923/1030 ; 639/766/189 ; Atomic ; Boundary layer ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Film thickness ; Hydroplaning ; Lubricants &amp; lubrication ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Surface chemistry ; Theoretical ; Thin films ; Tires ; Wetting</subject><ispartof>Nature physics, 2017-10, Vol.13 (10), p.1020-1025</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-83b94c78a99f0090ca9b54fc9b4dfd18844be2af012958accdf4a6776384c1543</citedby><cites>FETCH-LOGICAL-c332t-83b94c78a99f0090ca9b54fc9b4dfd18844be2af012958accdf4a6776384c1543</cites><orcidid>0000-0002-5859-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys4177$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys4177$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Daniel, Dan</creatorcontrib><creatorcontrib>Timonen, Jaakko V. I.</creatorcontrib><creatorcontrib>Li, Ruoping</creatorcontrib><creatorcontrib>Velling, Seneca J.</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><title>Oleoplaning droplets on lubricated surfaces</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle &lt;5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau–Levich–Derjaguin law. The droplet is therefore oleoplaning—akin to tyres hydroplaning on a wet road—with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design. Lubricated surfaces are known to display extreme liquid repellency. Such behaviour is now confirmed to be due to the formation of a film between the surface and the repelled liquid, with a thickness profile following the Landau–Levich–Derjaguin law.</description><subject>132/124</subject><subject>639/301/923/1030</subject><subject>639/766/189</subject><subject>Atomic</subject><subject>Boundary layer</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Film thickness</subject><subject>Hydroplaning</subject><subject>Lubricants &amp; lubrication</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Tires</subject><subject>Wetting</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0EtLxDAUBeAgCo6jC_9BwZVKNY_bJlnK4AsGZqPrkKbJ2KGmNbddzL-3UhkEV_csPs6FQ8glo3eMCnUf-489ApPyiCyYhCLnoNjxIUtxSs4Qd5QCL5lYkNtN67u-tbGJ26xOU_QDZl3M2rFKjbODrzMcU7DO4zk5CbZFf_F7l-T96fFt9ZKvN8-vq4d17oTgQ65EpcFJZbUOlGrqrK4KCE5XUIeaKQVQeW4DZVwXyjpXB7CllKVQ4FgBYkmu5t4-dV-jx8HsujHF6aVhGkougQs-qetZudQhJh9Mn5pPm_aGUfOzhTlsMdmb2eJk4tanP43_8DdSvWAT</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Daniel, Dan</creator><creator>Timonen, Jaakko V. I.</creator><creator>Li, Ruoping</creator><creator>Velling, Seneca J.</creator><creator>Aizenberg, Joanna</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5859-170X</orcidid></search><sort><creationdate>20171001</creationdate><title>Oleoplaning droplets on lubricated surfaces</title><author>Daniel, Dan ; Timonen, Jaakko V. I. ; Li, Ruoping ; Velling, Seneca J. ; Aizenberg, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-83b94c78a99f0090ca9b54fc9b4dfd18844be2af012958accdf4a6776384c1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>132/124</topic><topic>639/301/923/1030</topic><topic>639/766/189</topic><topic>Atomic</topic><topic>Boundary layer</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Film thickness</topic><topic>Hydroplaning</topic><topic>Lubricants &amp; lubrication</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Tires</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniel, Dan</creatorcontrib><creatorcontrib>Timonen, Jaakko V. I.</creatorcontrib><creatorcontrib>Li, Ruoping</creatorcontrib><creatorcontrib>Velling, Seneca J.</creatorcontrib><creatorcontrib>Aizenberg, Joanna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniel, Dan</au><au>Timonen, Jaakko V. I.</au><au>Li, Ruoping</au><au>Velling, Seneca J.</au><au>Aizenberg, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oleoplaning droplets on lubricated surfaces</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>13</volume><issue>10</issue><spage>1020</spage><epage>1025</epage><pages>1020-1025</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle &lt;5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau–Levich–Derjaguin law. The droplet is therefore oleoplaning—akin to tyres hydroplaning on a wet road—with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design. Lubricated surfaces are known to display extreme liquid repellency. Such behaviour is now confirmed to be due to the formation of a film between the surface and the repelled liquid, with a thickness profile following the Landau–Levich–Derjaguin law.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4177</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5859-170X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-10, Vol.13 (10), p.1020-1025
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1946274232
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 132/124
639/301/923/1030
639/766/189
Atomic
Boundary layer
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Film thickness
Hydroplaning
Lubricants & lubrication
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Surface chemistry
Theoretical
Thin films
Tires
Wetting
title Oleoplaning droplets on lubricated surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oleoplaning%20droplets%20on%20lubricated%20surfaces&rft.jtitle=Nature%20physics&rft.au=Daniel,%20Dan&rft.date=2017-10-01&rft.volume=13&rft.issue=10&rft.spage=1020&rft.epage=1025&rft.pages=1020-1025&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4177&rft_dat=%3Cproquest_cross%3E1946274232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946274232&rft_id=info:pmid/&rfr_iscdi=true