Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetizat...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2017-10, Vol.52 (10), p.2132-2146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2146 |
---|---|
container_issue | 10 |
container_start_page | 2132 |
container_title | Meteoritics & planetary science |
container_volume | 52 |
creator | Muxworthy, Adrian R. Bland, Phillip A. Davison, Thomas M. Moore, James Collins, Gareth S. Ciesla, Fred J. |
description | We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating. |
doi_str_mv | 10.1111/maps.12918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946104978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946104978</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEmNw4QkicUN0JE3SNsdpGn-kIZCAc5Wl7ujUJiNpB-XEnQvPyJOQreOKL7alnz_bXxCcEjwiPi5ruXIjEgmS7gUDIhgPOcF439c4jUNBE3EYHDm3xJhyQtkg-Jquyxy0AlQYi6RGZb2Sqvn5_C513irIUS0XGppSoULOrU-lRuOqAp3DhedzBO9mAdq0DsmqAatlU67Bocag5gWQMhZQ3mlZb3tju-2incKf-IcfMvo4OChk5eBkl4fB89X0aXITzu6vbyfjWShpjNMQMJZJwYT_BuYJiyPGWZpwFdGUztOCYhLxJOYiVgo4i-aUyVyKwncMc5YLOgzOet2VNa8tuCZbmtYfXrnMWxYTzESSeuq8p5Q1zlkospUta2m7jOBsY3a2MTvbmu1h0sNvZQXdP2R2N3547Gd-AZo4hFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946104978</pqid></control><display><type>article</type><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</creator><creatorcontrib>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</creatorcontrib><description>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12918</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chondrites ; Compaction ; Dynamo theory ; Heat sinks ; Heating ; Magnetic fields ; Magnetism ; Magnetization ; Meteorite craters ; Nebulae ; Paleomagnetic studies ; Porosity ; Pyrrhotite ; Remanence ; Sinkholes ; Terrestrial environments</subject><ispartof>Meteoritics & planetary science, 2017-10, Vol.52 (10), p.2132-2146</ispartof><rights>2017 The Authors. Meteoritics & Planetary Science published by Wiley Periodicals, Inc. on behalf of The Meteoritical Society.</rights><rights>Copyright © 2017 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</citedby><cites>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</cites><orcidid>0000-0001-8790-873X ; 0000-0002-3070-4477 ; 0000-0002-6087-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12918$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12918$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Muxworthy, Adrian R.</creatorcontrib><creatorcontrib>Bland, Phillip A.</creatorcontrib><creatorcontrib>Davison, Thomas M.</creatorcontrib><creatorcontrib>Moore, James</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Ciesla, Fred J.</creatorcontrib><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><title>Meteoritics & planetary science</title><description>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</description><subject>Chondrites</subject><subject>Compaction</subject><subject>Dynamo theory</subject><subject>Heat sinks</subject><subject>Heating</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Meteorite craters</subject><subject>Nebulae</subject><subject>Paleomagnetic studies</subject><subject>Porosity</subject><subject>Pyrrhotite</subject><subject>Remanence</subject><subject>Sinkholes</subject><subject>Terrestrial environments</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM9OwzAMxisEEmNw4QkicUN0JE3SNsdpGn-kIZCAc5Wl7ujUJiNpB-XEnQvPyJOQreOKL7alnz_bXxCcEjwiPi5ruXIjEgmS7gUDIhgPOcF439c4jUNBE3EYHDm3xJhyQtkg-Jquyxy0AlQYi6RGZb2Sqvn5_C513irIUS0XGppSoULOrU-lRuOqAp3DhedzBO9mAdq0DsmqAatlU67Bocag5gWQMhZQ3mlZb3tju-2incKf-IcfMvo4OChk5eBkl4fB89X0aXITzu6vbyfjWShpjNMQMJZJwYT_BuYJiyPGWZpwFdGUztOCYhLxJOYiVgo4i-aUyVyKwncMc5YLOgzOet2VNa8tuCZbmtYfXrnMWxYTzESSeuq8p5Q1zlkospUta2m7jOBsY3a2MTvbmu1h0sNvZQXdP2R2N3547Gd-AZo4hFA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Muxworthy, Adrian R.</creator><creator>Bland, Phillip A.</creator><creator>Davison, Thomas M.</creator><creator>Moore, James</creator><creator>Collins, Gareth S.</creator><creator>Ciesla, Fred J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8790-873X</orcidid><orcidid>https://orcid.org/0000-0002-3070-4477</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid></search><sort><creationdate>201710</creationdate><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><author>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chondrites</topic><topic>Compaction</topic><topic>Dynamo theory</topic><topic>Heat sinks</topic><topic>Heating</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Meteorite craters</topic><topic>Nebulae</topic><topic>Paleomagnetic studies</topic><topic>Porosity</topic><topic>Pyrrhotite</topic><topic>Remanence</topic><topic>Sinkholes</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muxworthy, Adrian R.</creatorcontrib><creatorcontrib>Bland, Phillip A.</creatorcontrib><creatorcontrib>Davison, Thomas M.</creatorcontrib><creatorcontrib>Moore, James</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Ciesla, Fred J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muxworthy, Adrian R.</au><au>Bland, Phillip A.</au><au>Davison, Thomas M.</au><au>Moore, James</au><au>Collins, Gareth S.</au><au>Ciesla, Fred J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2017-10</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>2132</spage><epage>2146</epage><pages>2132-2146</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.12918</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8790-873X</orcidid><orcidid>https://orcid.org/0000-0002-3070-4477</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2017-10, Vol.52 (10), p.2132-2146 |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_journals_1946104978 |
source | Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals |
subjects | Chondrites Compaction Dynamo theory Heat sinks Heating Magnetic fields Magnetism Magnetization Meteorite craters Nebulae Paleomagnetic studies Porosity Pyrrhotite Remanence Sinkholes Terrestrial environments |
title | Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20impact%E2%80%90induced%20magnetic%20fabric%20in%20Allende,%20and%20exogenous%20alternatives%20to%20the%20core%20dynamo%20theory%20for%20Allende%20magnetization&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Muxworthy,%20Adrian%20R.&rft.date=2017-10&rft.volume=52&rft.issue=10&rft.spage=2132&rft.epage=2146&rft.pages=2132-2146&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.12918&rft_dat=%3Cproquest_cross%3E1946104978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946104978&rft_id=info:pmid/&rfr_iscdi=true |