Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization

We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2017-10, Vol.52 (10), p.2132-2146
Hauptverfasser: Muxworthy, Adrian R., Bland, Phillip A., Davison, Thomas M., Moore, James, Collins, Gareth S., Ciesla, Fred J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 10
container_start_page 2132
container_title Meteoritics & planetary science
container_volume 52
creator Muxworthy, Adrian R.
Bland, Phillip A.
Davison, Thomas M.
Moore, James
Collins, Gareth S.
Ciesla, Fred J.
description We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.
doi_str_mv 10.1111/maps.12918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946104978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946104978</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEmNw4QkicUN0JE3SNsdpGn-kIZCAc5Wl7ujUJiNpB-XEnQvPyJOQreOKL7alnz_bXxCcEjwiPi5ruXIjEgmS7gUDIhgPOcF439c4jUNBE3EYHDm3xJhyQtkg-Jquyxy0AlQYi6RGZb2Sqvn5_C513irIUS0XGppSoULOrU-lRuOqAp3DhedzBO9mAdq0DsmqAatlU67Bocag5gWQMhZQ3mlZb3tju-2incKf-IcfMvo4OChk5eBkl4fB89X0aXITzu6vbyfjWShpjNMQMJZJwYT_BuYJiyPGWZpwFdGUztOCYhLxJOYiVgo4i-aUyVyKwncMc5YLOgzOet2VNa8tuCZbmtYfXrnMWxYTzESSeuq8p5Q1zlkospUta2m7jOBsY3a2MTvbmu1h0sNvZQXdP2R2N3547Gd-AZo4hFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946104978</pqid></control><display><type>article</type><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</creator><creatorcontrib>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</creatorcontrib><description>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12918</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chondrites ; Compaction ; Dynamo theory ; Heat sinks ; Heating ; Magnetic fields ; Magnetism ; Magnetization ; Meteorite craters ; Nebulae ; Paleomagnetic studies ; Porosity ; Pyrrhotite ; Remanence ; Sinkholes ; Terrestrial environments</subject><ispartof>Meteoritics &amp; planetary science, 2017-10, Vol.52 (10), p.2132-2146</ispartof><rights>2017 The Authors. Meteoritics &amp; Planetary Science published by Wiley Periodicals, Inc. on behalf of The Meteoritical Society.</rights><rights>Copyright © 2017 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</citedby><cites>FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</cites><orcidid>0000-0001-8790-873X ; 0000-0002-3070-4477 ; 0000-0002-6087-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12918$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12918$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Muxworthy, Adrian R.</creatorcontrib><creatorcontrib>Bland, Phillip A.</creatorcontrib><creatorcontrib>Davison, Thomas M.</creatorcontrib><creatorcontrib>Moore, James</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Ciesla, Fred J.</creatorcontrib><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><title>Meteoritics &amp; planetary science</title><description>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</description><subject>Chondrites</subject><subject>Compaction</subject><subject>Dynamo theory</subject><subject>Heat sinks</subject><subject>Heating</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Meteorite craters</subject><subject>Nebulae</subject><subject>Paleomagnetic studies</subject><subject>Porosity</subject><subject>Pyrrhotite</subject><subject>Remanence</subject><subject>Sinkholes</subject><subject>Terrestrial environments</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM9OwzAMxisEEmNw4QkicUN0JE3SNsdpGn-kIZCAc5Wl7ujUJiNpB-XEnQvPyJOQreOKL7alnz_bXxCcEjwiPi5ruXIjEgmS7gUDIhgPOcF439c4jUNBE3EYHDm3xJhyQtkg-Jquyxy0AlQYi6RGZb2Sqvn5_C513irIUS0XGppSoULOrU-lRuOqAp3DhedzBO9mAdq0DsmqAatlU67Bocag5gWQMhZQ3mlZb3tju-2incKf-IcfMvo4OChk5eBkl4fB89X0aXITzu6vbyfjWShpjNMQMJZJwYT_BuYJiyPGWZpwFdGUztOCYhLxJOYiVgo4i-aUyVyKwncMc5YLOgzOet2VNa8tuCZbmtYfXrnMWxYTzESSeuq8p5Q1zlkospUta2m7jOBsY3a2MTvbmu1h0sNvZQXdP2R2N3547Gd-AZo4hFA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Muxworthy, Adrian R.</creator><creator>Bland, Phillip A.</creator><creator>Davison, Thomas M.</creator><creator>Moore, James</creator><creator>Collins, Gareth S.</creator><creator>Ciesla, Fred J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8790-873X</orcidid><orcidid>https://orcid.org/0000-0002-3070-4477</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid></search><sort><creationdate>201710</creationdate><title>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</title><author>Muxworthy, Adrian R. ; Bland, Phillip A. ; Davison, Thomas M. ; Moore, James ; Collins, Gareth S. ; Ciesla, Fred J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3608-e00a7f49937eb7462454875c2383b8f3012576596cce542b34ada9fcce4054d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chondrites</topic><topic>Compaction</topic><topic>Dynamo theory</topic><topic>Heat sinks</topic><topic>Heating</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Meteorite craters</topic><topic>Nebulae</topic><topic>Paleomagnetic studies</topic><topic>Porosity</topic><topic>Pyrrhotite</topic><topic>Remanence</topic><topic>Sinkholes</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muxworthy, Adrian R.</creatorcontrib><creatorcontrib>Bland, Phillip A.</creatorcontrib><creatorcontrib>Davison, Thomas M.</creatorcontrib><creatorcontrib>Moore, James</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Ciesla, Fred J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muxworthy, Adrian R.</au><au>Bland, Phillip A.</au><au>Davison, Thomas M.</au><au>Moore, James</au><au>Collins, Gareth S.</au><au>Ciesla, Fred J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2017-10</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>2132</spage><epage>2146</epage><pages>2132-2146</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.12918</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8790-873X</orcidid><orcidid>https://orcid.org/0000-0002-3070-4477</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2017-10, Vol.52 (10), p.2132-2146
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_1946104978
source Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects Chondrites
Compaction
Dynamo theory
Heat sinks
Heating
Magnetic fields
Magnetism
Magnetization
Meteorite craters
Nebulae
Paleomagnetic studies
Porosity
Pyrrhotite
Remanence
Sinkholes
Terrestrial environments
title Evidence for an impact‐induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20impact%E2%80%90induced%20magnetic%20fabric%20in%20Allende,%20and%20exogenous%20alternatives%20to%20the%20core%20dynamo%20theory%20for%20Allende%20magnetization&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Muxworthy,%20Adrian%20R.&rft.date=2017-10&rft.volume=52&rft.issue=10&rft.spage=2132&rft.epage=2146&rft.pages=2132-2146&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.12918&rft_dat=%3Cproquest_cross%3E1946104978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946104978&rft_id=info:pmid/&rfr_iscdi=true