Rigidity of (m,ρ)‐quasi Einstein manifolds

This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2017-10, Vol.290 (14-15), p.2100-2110
Hauptverfasser: Altay Demirba, Sezgin, Guler, Sinem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2110
container_issue 14-15
container_start_page 2100
container_title Mathematische Nachrichten
container_volume 290
creator Altay Demirba, Sezgin
Guler, Sinem
description This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.
doi_str_mv 10.1002/mana.201600186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946096416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946096416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRMFa3rgNuFEy885uZZSj1B6qCdOFuSJMZmdImbSZFstM38M18B5_EKRFdurqbc74LB6FTDCkGIFeroi5SAlgAYCn2UIQ5IQkRWOyjKAA84ZI9H6Ij7xcAoFQmIpQ8uRdXua6PGxufry4_3y--3j4228K7eOJq3xlXx2HZ2WZZ-WN0YIulNyc_d4Rm15PZ-DaZPt7cjfNpUlKciQRXwDgYTivGKqsMFVJZORcU5lVpMgKcS5lRETBigAcFSgtcYsWYVJSO0Nkwu26bzdb4Ti-abVuHjzogApRgWAQqHaiybbxvjdXr1q2KttcY9K6I3hXRv0WCoAbh1S1N_w-t7_OH_M_9BouiYxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946096416</pqid></control><display><type>article</type><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Altay Demirba, Sezgin ; Guler, Sinem</creator><creatorcontrib>Altay Demirba, Sezgin ; Guler, Sinem</creatorcontrib><description>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201600186</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>(m,ρ)‐quasi Einstein manifold ; 53B15 ; 53B20 ; 53C21 ; 53C25 ; closed conformal vector field ; conformal mapping ; Production planning ; Riemann manifold ; Rigidity ; warped product</subject><ispartof>Mathematische Nachrichten, 2017-10, Vol.290 (14-15), p.2100-2110</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</citedby><cites>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201600186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201600186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Altay Demirba, Sezgin</creatorcontrib><creatorcontrib>Guler, Sinem</creatorcontrib><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><title>Mathematische Nachrichten</title><description>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</description><subject>(m,ρ)‐quasi Einstein manifold</subject><subject>53B15</subject><subject>53B20</subject><subject>53C21</subject><subject>53C25</subject><subject>closed conformal vector field</subject><subject>conformal mapping</subject><subject>Production planning</subject><subject>Riemann manifold</subject><subject>Rigidity</subject><subject>warped product</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRMFa3rgNuFEy885uZZSj1B6qCdOFuSJMZmdImbSZFstM38M18B5_EKRFdurqbc74LB6FTDCkGIFeroi5SAlgAYCn2UIQ5IQkRWOyjKAA84ZI9H6Ij7xcAoFQmIpQ8uRdXua6PGxufry4_3y--3j4228K7eOJq3xlXx2HZ2WZZ-WN0YIulNyc_d4Rm15PZ-DaZPt7cjfNpUlKciQRXwDgYTivGKqsMFVJZORcU5lVpMgKcS5lRETBigAcFSgtcYsWYVJSO0Nkwu26bzdb4Ti-abVuHjzogApRgWAQqHaiybbxvjdXr1q2KttcY9K6I3hXRv0WCoAbh1S1N_w-t7_OH_M_9BouiYxk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Altay Demirba, Sezgin</creator><creator>Guler, Sinem</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201710</creationdate><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><author>Altay Demirba, Sezgin ; Guler, Sinem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>(m,ρ)‐quasi Einstein manifold</topic><topic>53B15</topic><topic>53B20</topic><topic>53C21</topic><topic>53C25</topic><topic>closed conformal vector field</topic><topic>conformal mapping</topic><topic>Production planning</topic><topic>Riemann manifold</topic><topic>Rigidity</topic><topic>warped product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altay Demirba, Sezgin</creatorcontrib><creatorcontrib>Guler, Sinem</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altay Demirba, Sezgin</au><au>Guler, Sinem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of (m,ρ)‐quasi Einstein manifolds</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2017-10</date><risdate>2017</risdate><volume>290</volume><issue>14-15</issue><spage>2100</spage><epage>2110</epage><pages>2100-2110</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201600186</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2017-10, Vol.290 (14-15), p.2100-2110
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_1946096416
source Wiley Online Library Journals Frontfile Complete
subjects (m,ρ)‐quasi Einstein manifold
53B15
53B20
53C21
53C25
closed conformal vector field
conformal mapping
Production planning
Riemann manifold
Rigidity
warped product
title Rigidity of (m,ρ)‐quasi Einstein manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20(m,%CF%81)%E2%80%90quasi%20Einstein%20manifolds&rft.jtitle=Mathematische%20Nachrichten&rft.au=Altay%20Demirba,%20Sezgin&rft.date=2017-10&rft.volume=290&rft.issue=14-15&rft.spage=2100&rft.epage=2110&rft.pages=2100-2110&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201600186&rft_dat=%3Cproquest_cross%3E1946096416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946096416&rft_id=info:pmid/&rfr_iscdi=true