Rigidity of (m,ρ)‐quasi Einstein manifolds
This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstei...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2017-10, Vol.290 (14-15), p.2100-2110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2110 |
---|---|
container_issue | 14-15 |
container_start_page | 2100 |
container_title | Mathematische Nachrichten |
container_volume | 290 |
creator | Altay Demirba, Sezgin Guler, Sinem |
description | This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented. |
doi_str_mv | 10.1002/mana.201600186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1946096416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946096416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRMFa3rgNuFEy885uZZSj1B6qCdOFuSJMZmdImbSZFstM38M18B5_EKRFdurqbc74LB6FTDCkGIFeroi5SAlgAYCn2UIQ5IQkRWOyjKAA84ZI9H6Ij7xcAoFQmIpQ8uRdXua6PGxufry4_3y--3j4228K7eOJq3xlXx2HZ2WZZ-WN0YIulNyc_d4Rm15PZ-DaZPt7cjfNpUlKciQRXwDgYTivGKqsMFVJZORcU5lVpMgKcS5lRETBigAcFSgtcYsWYVJSO0Nkwu26bzdb4Ti-abVuHjzogApRgWAQqHaiybbxvjdXr1q2KttcY9K6I3hXRv0WCoAbh1S1N_w-t7_OH_M_9BouiYxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946096416</pqid></control><display><type>article</type><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Altay Demirba, Sezgin ; Guler, Sinem</creator><creatorcontrib>Altay Demirba, Sezgin ; Guler, Sinem</creatorcontrib><description>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201600186</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>(m,ρ)‐quasi Einstein manifold ; 53B15 ; 53B20 ; 53C21 ; 53C25 ; closed conformal vector field ; conformal mapping ; Production planning ; Riemann manifold ; Rigidity ; warped product</subject><ispartof>Mathematische Nachrichten, 2017-10, Vol.290 (14-15), p.2100-2110</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</citedby><cites>FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201600186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201600186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Altay Demirba, Sezgin</creatorcontrib><creatorcontrib>Guler, Sinem</creatorcontrib><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><title>Mathematische Nachrichten</title><description>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</description><subject>(m,ρ)‐quasi Einstein manifold</subject><subject>53B15</subject><subject>53B20</subject><subject>53C21</subject><subject>53C25</subject><subject>closed conformal vector field</subject><subject>conformal mapping</subject><subject>Production planning</subject><subject>Riemann manifold</subject><subject>Rigidity</subject><subject>warped product</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRMFa3rgNuFEy885uZZSj1B6qCdOFuSJMZmdImbSZFstM38M18B5_EKRFdurqbc74LB6FTDCkGIFeroi5SAlgAYCn2UIQ5IQkRWOyjKAA84ZI9H6Ij7xcAoFQmIpQ8uRdXua6PGxufry4_3y--3j4228K7eOJq3xlXx2HZ2WZZ-WN0YIulNyc_d4Rm15PZ-DaZPt7cjfNpUlKciQRXwDgYTivGKqsMFVJZORcU5lVpMgKcS5lRETBigAcFSgtcYsWYVJSO0Nkwu26bzdb4Ti-abVuHjzogApRgWAQqHaiybbxvjdXr1q2KttcY9K6I3hXRv0WCoAbh1S1N_w-t7_OH_M_9BouiYxk</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Altay Demirba, Sezgin</creator><creator>Guler, Sinem</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201710</creationdate><title>Rigidity of (m,ρ)‐quasi Einstein manifolds</title><author>Altay Demirba, Sezgin ; Guler, Sinem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-1d0450e53d44df9e3689f8b630bdce7205588736d042e051760cf05819448933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>(m,ρ)‐quasi Einstein manifold</topic><topic>53B15</topic><topic>53B20</topic><topic>53C21</topic><topic>53C25</topic><topic>closed conformal vector field</topic><topic>conformal mapping</topic><topic>Production planning</topic><topic>Riemann manifold</topic><topic>Rigidity</topic><topic>warped product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altay Demirba, Sezgin</creatorcontrib><creatorcontrib>Guler, Sinem</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altay Demirba, Sezgin</au><au>Guler, Sinem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of (m,ρ)‐quasi Einstein manifolds</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2017-10</date><risdate>2017</risdate><volume>290</volume><issue>14-15</issue><spage>2100</spage><epage>2110</epage><pages>2100-2110</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>This paper deals with the study on (m,ρ)‐quasi Einstein manifolds. First, we give some characterizations of an (m,ρ)‐quasi Einstein manifold admitting closed conformal or parallel vector field. Then, we obtain some rigidity conditions for this class of manifolds. We prove that an (m,ρ)‐quasi Einstein manifold with a closed conformal vector field has a warped product structure of the form I×eq/2M∗, where I is a real interval, (M∗,g∗) is an (n−1)‐dimensional Riemannian manifold and q is a smooth function on I. Finally, a non‐trivial example of an (m,ρ)‐quasi Einstein manifold verifying our results in terms of the potential function is presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201600186</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2017-10, Vol.290 (14-15), p.2100-2110 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_1946096416 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | (m,ρ)‐quasi Einstein manifold 53B15 53B20 53C21 53C25 closed conformal vector field conformal mapping Production planning Riemann manifold Rigidity warped product |
title | Rigidity of (m,ρ)‐quasi Einstein manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20(m,%CF%81)%E2%80%90quasi%20Einstein%20manifolds&rft.jtitle=Mathematische%20Nachrichten&rft.au=Altay%20Demirba,%20Sezgin&rft.date=2017-10&rft.volume=290&rft.issue=14-15&rft.spage=2100&rft.epage=2110&rft.pages=2100-2110&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201600186&rft_dat=%3Cproquest_cross%3E1946096416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946096416&rft_id=info:pmid/&rfr_iscdi=true |