Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol

•Development of a new type of strain sensors by applying a microfluidic technique.•Reduction of signal hysteresis by introducing a binary mixture of ionic liquid and ethylene glycol.•Enhancement of sensing performance of the liquid-type strain sensors with high gauge factor. We present a simple liqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2017-02, Vol.254, p.1-8
Hauptverfasser: Yoon, Sun Geun, Park, Byoung Joon, Chang, Suk Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Sensors and actuators. A. Physical.
container_volume 254
creator Yoon, Sun Geun
Park, Byoung Joon
Chang, Suk Tai
description •Development of a new type of strain sensors by applying a microfluidic technique.•Reduction of signal hysteresis by introducing a binary mixture of ionic liquid and ethylene glycol.•Enhancement of sensing performance of the liquid-type strain sensors with high gauge factor. We present a simple liquid-type strain sensor using a binary mixture of ethylene glycol (EG) and ionic liquid (IL) in a linear microfluidic channel. The EG/IL-based strain sensor showed highly sensitive response to tensile strain in a polydimethylsiloxane (PDMS) microfluidic channel. In addition, the EG/IL-based strain sensor exhibited outstanding signal recovery and high sensitivity to applied strain (200%) in an Eco-Flex microfluidic channel. The EG/IL-based strain sensor exhibited 2.3 times higher gauge factor at 200% strain, compared to the microfluidic strain sensor using neat IL. Moreover, the EG/IL strain sensor showed clear signal responses with negligible hysteresis, even at high strain speed of 16.667mm/s. Compared to other liquid-type strain sensors, the EG/IL-based strain sensor exhibited very high resistance variations, surpassing the elastic channel deformation effect. To explain this effect, the conducting behavior of ionic liquids in ethylene glycol was also investigated. This novel fabrication of EG/IL-based strain sensors shows potential for the development and practical application of liquid-type strain sensors.
doi_str_mv 10.1016/j.sna.2016.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1945713156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092442471631086X</els_id><sourcerecordid>1945713156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-baaf4e3f66f9348b6fe445cebd94ecc33ae72209974696c3823495b5f3c7d3583</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvhA3CzxDnB_2KvxQlV0CJV6qWcLccZ784qtVs7aYn48rgsZ04z0rzfm5lHyEfOes64_nzqa_K9aG3PRc-YeUV2fG9kJ5m2r8mOWaE6JZR5S97VemKMSWnMjvy-xsNx3miFVHHBJ6D3GEqO84oTBlqX4jH9neZS6TMuRzrnZ3rc6gIFKla6VkwH6umIyZet4b-WtQDNkWJOzWLGx-ZFfZooLMdthgT0MG8hz-_Jm-jnCh_-1Qvy8_u3u8vr7ub26sfl15suSC2WbvQ-KpBR62il2o86glJDgHGyCkKQ0oMRgllrlLY6yL2Qyg7jEGUwkxz28oJ8Ovs-lPy4Ql3cKa8ltZWOWzUYLvmgm4qfVe39WgtE91Dwvr3kOHMvGbuTaxm7l4wdF65l3JgvZwba-U8IxdWAkAJMWCAsbsr4H_oPiGWHNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945713156</pqid></control><display><type>article</type><title>Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yoon, Sun Geun ; Park, Byoung Joon ; Chang, Suk Tai</creator><creatorcontrib>Yoon, Sun Geun ; Park, Byoung Joon ; Chang, Suk Tai</creatorcontrib><description>•Development of a new type of strain sensors by applying a microfluidic technique.•Reduction of signal hysteresis by introducing a binary mixture of ionic liquid and ethylene glycol.•Enhancement of sensing performance of the liquid-type strain sensors with high gauge factor. We present a simple liquid-type strain sensor using a binary mixture of ethylene glycol (EG) and ionic liquid (IL) in a linear microfluidic channel. The EG/IL-based strain sensor showed highly sensitive response to tensile strain in a polydimethylsiloxane (PDMS) microfluidic channel. In addition, the EG/IL-based strain sensor exhibited outstanding signal recovery and high sensitivity to applied strain (200%) in an Eco-Flex microfluidic channel. The EG/IL-based strain sensor exhibited 2.3 times higher gauge factor at 200% strain, compared to the microfluidic strain sensor using neat IL. Moreover, the EG/IL strain sensor showed clear signal responses with negligible hysteresis, even at high strain speed of 16.667mm/s. Compared to other liquid-type strain sensors, the EG/IL-based strain sensor exhibited very high resistance variations, surpassing the elastic channel deformation effect. To explain this effect, the conducting behavior of ionic liquids in ethylene glycol was also investigated. This novel fabrication of EG/IL-based strain sensors shows potential for the development and practical application of liquid-type strain sensors.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2016.12.007</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Antifreeze solutions ; Deformation ; Deformation effects ; Deformation mechanisms ; Deformation resistance ; Elastic deformation ; Ethylene glycol ; Fluids ; High resistance ; Hysteresis ; Ionic liquid ; Ionic liquids ; Liquid-type strain sensor ; Microfluidics ; Polydimethylsiloxane ; Polymers ; Sensors ; Signal reconstruction ; Silicone resins ; Strain ; Strain gauges</subject><ispartof>Sensors and actuators. A. Physical., 2017-02, Vol.254, p.1-8</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-baaf4e3f66f9348b6fe445cebd94ecc33ae72209974696c3823495b5f3c7d3583</citedby><cites>FETCH-LOGICAL-c362t-baaf4e3f66f9348b6fe445cebd94ecc33ae72209974696c3823495b5f3c7d3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092442471631086X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yoon, Sun Geun</creatorcontrib><creatorcontrib>Park, Byoung Joon</creatorcontrib><creatorcontrib>Chang, Suk Tai</creatorcontrib><title>Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol</title><title>Sensors and actuators. A. Physical.</title><description>•Development of a new type of strain sensors by applying a microfluidic technique.•Reduction of signal hysteresis by introducing a binary mixture of ionic liquid and ethylene glycol.•Enhancement of sensing performance of the liquid-type strain sensors with high gauge factor. We present a simple liquid-type strain sensor using a binary mixture of ethylene glycol (EG) and ionic liquid (IL) in a linear microfluidic channel. The EG/IL-based strain sensor showed highly sensitive response to tensile strain in a polydimethylsiloxane (PDMS) microfluidic channel. In addition, the EG/IL-based strain sensor exhibited outstanding signal recovery and high sensitivity to applied strain (200%) in an Eco-Flex microfluidic channel. The EG/IL-based strain sensor exhibited 2.3 times higher gauge factor at 200% strain, compared to the microfluidic strain sensor using neat IL. Moreover, the EG/IL strain sensor showed clear signal responses with negligible hysteresis, even at high strain speed of 16.667mm/s. Compared to other liquid-type strain sensors, the EG/IL-based strain sensor exhibited very high resistance variations, surpassing the elastic channel deformation effect. To explain this effect, the conducting behavior of ionic liquids in ethylene glycol was also investigated. This novel fabrication of EG/IL-based strain sensors shows potential for the development and practical application of liquid-type strain sensors.</description><subject>Antifreeze solutions</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Deformation resistance</subject><subject>Elastic deformation</subject><subject>Ethylene glycol</subject><subject>Fluids</subject><subject>High resistance</subject><subject>Hysteresis</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Liquid-type strain sensor</subject><subject>Microfluidics</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Sensors</subject><subject>Signal reconstruction</subject><subject>Silicone resins</subject><subject>Strain</subject><subject>Strain gauges</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvhA3CzxDnB_2KvxQlV0CJV6qWcLccZ784qtVs7aYn48rgsZ04z0rzfm5lHyEfOes64_nzqa_K9aG3PRc-YeUV2fG9kJ5m2r8mOWaE6JZR5S97VemKMSWnMjvy-xsNx3miFVHHBJ6D3GEqO84oTBlqX4jH9neZS6TMuRzrnZ3rc6gIFKla6VkwH6umIyZet4b-WtQDNkWJOzWLGx-ZFfZooLMdthgT0MG8hz-_Jm-jnCh_-1Qvy8_u3u8vr7ub26sfl15suSC2WbvQ-KpBR62il2o86glJDgHGyCkKQ0oMRgllrlLY6yL2Qyg7jEGUwkxz28oJ8Ovs-lPy4Ql3cKa8ltZWOWzUYLvmgm4qfVe39WgtE91Dwvr3kOHMvGbuTaxm7l4wdF65l3JgvZwba-U8IxdWAkAJMWCAsbsr4H_oPiGWHNw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Yoon, Sun Geun</creator><creator>Park, Byoung Joon</creator><creator>Chang, Suk Tai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20170201</creationdate><title>Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol</title><author>Yoon, Sun Geun ; Park, Byoung Joon ; Chang, Suk Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-baaf4e3f66f9348b6fe445cebd94ecc33ae72209974696c3823495b5f3c7d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antifreeze solutions</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Deformation resistance</topic><topic>Elastic deformation</topic><topic>Ethylene glycol</topic><topic>Fluids</topic><topic>High resistance</topic><topic>Hysteresis</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Liquid-type strain sensor</topic><topic>Microfluidics</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Sensors</topic><topic>Signal reconstruction</topic><topic>Silicone resins</topic><topic>Strain</topic><topic>Strain gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Sun Geun</creatorcontrib><creatorcontrib>Park, Byoung Joon</creatorcontrib><creatorcontrib>Chang, Suk Tai</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Sun Geun</au><au>Park, Byoung Joon</au><au>Chang, Suk Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>254</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•Development of a new type of strain sensors by applying a microfluidic technique.•Reduction of signal hysteresis by introducing a binary mixture of ionic liquid and ethylene glycol.•Enhancement of sensing performance of the liquid-type strain sensors with high gauge factor. We present a simple liquid-type strain sensor using a binary mixture of ethylene glycol (EG) and ionic liquid (IL) in a linear microfluidic channel. The EG/IL-based strain sensor showed highly sensitive response to tensile strain in a polydimethylsiloxane (PDMS) microfluidic channel. In addition, the EG/IL-based strain sensor exhibited outstanding signal recovery and high sensitivity to applied strain (200%) in an Eco-Flex microfluidic channel. The EG/IL-based strain sensor exhibited 2.3 times higher gauge factor at 200% strain, compared to the microfluidic strain sensor using neat IL. Moreover, the EG/IL strain sensor showed clear signal responses with negligible hysteresis, even at high strain speed of 16.667mm/s. Compared to other liquid-type strain sensors, the EG/IL-based strain sensor exhibited very high resistance variations, surpassing the elastic channel deformation effect. To explain this effect, the conducting behavior of ionic liquids in ethylene glycol was also investigated. This novel fabrication of EG/IL-based strain sensors shows potential for the development and practical application of liquid-type strain sensors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2016.12.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2017-02, Vol.254, p.1-8
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_1945713156
source ScienceDirect Journals (5 years ago - present)
subjects Antifreeze solutions
Deformation
Deformation effects
Deformation mechanisms
Deformation resistance
Elastic deformation
Ethylene glycol
Fluids
High resistance
Hysteresis
Ionic liquid
Ionic liquids
Liquid-type strain sensor
Microfluidics
Polydimethylsiloxane
Polymers
Sensors
Signal reconstruction
Silicone resins
Strain
Strain gauges
title Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20microfluidic%20strain%20sensors%20with%20low%20hysteresis%20using%20a%20binary%20mixture%20of%20ionic%20liquid%20and%20ethylene%20glycol&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Yoon,%20Sun%20Geun&rft.date=2017-02-01&rft.volume=254&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2016.12.007&rft_dat=%3Cproquest_cross%3E1945713156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945713156&rft_id=info:pmid/&rft_els_id=S092442471631086X&rfr_iscdi=true