A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine

This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coars...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2017-11, Vol.12 (6), p.883-890
Hauptverfasser: Li, Weite, Zhou, Bo, Chen, Benhui, Hu, Jinglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue 6
container_start_page 883
container_title IEEJ transactions on electrical and electronic engineering
container_volume 12
creator Li, Weite
Zhou, Bo
Chen, Benhui
Hu, Jinglu
description This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
doi_str_mv 10.1002/tee.22479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1945587317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945587317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2rGdxGNVlR-pEkuZLcdxWldJnNoOVTcegWfkSTAEsTHdo3u-c690ALjFaIYRSudB61ma0pyfgQnmBCeUF_j8T-fkElx5v0eIZqQoJqBdwK22rQ7u9Pn-UUqvKxiONmofdA-jsbMVrK2Dne0a02npoGqk96Y2SgZjOzh4023hYZDexNgv44e-ty7AN61CDLdS7aJxDS5q2Xh98zun4PVhtVk-JeuXx-flYp0okhGepGlWlZhzlSssS5pmlCqc5ZJXFSpqLiknXDHGZF3wskKlonHHVLQwx7RkZAruxru9s4dB-yD2dnBdfCkwp4wVOcF5pO5HSjnrvdO16J1ppTsJjMR3myK2KX7ajOx8ZI-m0af_QbFZrcbEFySbex0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945587317</pqid></control><display><type>article</type><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><source>Access via Wiley Online Library</source><creator>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</creator><creatorcontrib>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</creatorcontrib><description>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.22479</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Basis functions ; Classification ; Classifiers ; Construction standards ; kernel composition ; multiple local linear classifiers ; nonlinear classification ; Partitions ; support vector machine ; Support vector machines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.883-890</ispartof><rights>2017 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</citedby><cites>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.22479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.22479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Chen, Benhui</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><title>IEEJ transactions on electrical and electronic engineering</title><description>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</description><subject>Basis functions</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Construction standards</subject><subject>kernel composition</subject><subject>multiple local linear classifiers</subject><subject>nonlinear classification</subject><subject>Partitions</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2rGdxGNVlR-pEkuZLcdxWldJnNoOVTcegWfkSTAEsTHdo3u-c690ALjFaIYRSudB61ma0pyfgQnmBCeUF_j8T-fkElx5v0eIZqQoJqBdwK22rQ7u9Pn-UUqvKxiONmofdA-jsbMVrK2Dne0a02npoGqk96Y2SgZjOzh4023hYZDexNgv44e-ty7AN61CDLdS7aJxDS5q2Xh98zun4PVhtVk-JeuXx-flYp0okhGepGlWlZhzlSssS5pmlCqc5ZJXFSpqLiknXDHGZF3wskKlonHHVLQwx7RkZAruxru9s4dB-yD2dnBdfCkwp4wVOcF5pO5HSjnrvdO16J1ppTsJjMR3myK2KX7ajOx8ZI-m0af_QbFZrcbEFySbex0</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Li, Weite</creator><creator>Zhou, Bo</creator><creator>Chen, Benhui</creator><creator>Hu, Jinglu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201711</creationdate><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><author>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basis functions</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Construction standards</topic><topic>kernel composition</topic><topic>multiple local linear classifiers</topic><topic>nonlinear classification</topic><topic>Partitions</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Chen, Benhui</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weite</au><au>Zhou, Bo</au><au>Chen, Benhui</au><au>Hu, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2017-11</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>883</spage><epage>890</epage><pages>883-890</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/tee.22479</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-4973
ispartof IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.883-890
issn 1931-4973
1931-4981
language eng
recordid cdi_proquest_journals_1945587317
source Access via Wiley Online Library
subjects Basis functions
Classification
Classifiers
Construction standards
kernel composition
multiple local linear classifiers
nonlinear classification
Partitions
support vector machine
Support vector machines
title A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometry%E2%80%90based%20two%E2%80%90step%20method%20for%20nonlinear%20classification%20using%20quasi%E2%80%90linear%20support%20vector%20machine&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Li,%20Weite&rft.date=2017-11&rft.volume=12&rft.issue=6&rft.spage=883&rft.epage=890&rft.pages=883-890&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.22479&rft_dat=%3Cproquest_cross%3E1945587317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945587317&rft_id=info:pmid/&rfr_iscdi=true