A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine
This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coars...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2017-11, Vol.12 (6), p.883-890 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 890 |
---|---|
container_issue | 6 |
container_start_page | 883 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 12 |
creator | Li, Weite Zhou, Bo Chen, Benhui Hu, Jinglu |
description | This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/tee.22479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1945587317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945587317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2rGdxGNVlR-pEkuZLcdxWldJnNoOVTcegWfkSTAEsTHdo3u-c690ALjFaIYRSudB61ma0pyfgQnmBCeUF_j8T-fkElx5v0eIZqQoJqBdwK22rQ7u9Pn-UUqvKxiONmofdA-jsbMVrK2Dne0a02npoGqk96Y2SgZjOzh4023hYZDexNgv44e-ty7AN61CDLdS7aJxDS5q2Xh98zun4PVhtVk-JeuXx-flYp0okhGepGlWlZhzlSssS5pmlCqc5ZJXFSpqLiknXDHGZF3wskKlonHHVLQwx7RkZAruxru9s4dB-yD2dnBdfCkwp4wVOcF5pO5HSjnrvdO16J1ppTsJjMR3myK2KX7ajOx8ZI-m0af_QbFZrcbEFySbex0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945587317</pqid></control><display><type>article</type><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><source>Access via Wiley Online Library</source><creator>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</creator><creatorcontrib>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</creatorcontrib><description>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.22479</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Basis functions ; Classification ; Classifiers ; Construction standards ; kernel composition ; multiple local linear classifiers ; nonlinear classification ; Partitions ; support vector machine ; Support vector machines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.883-890</ispartof><rights>2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</citedby><cites>FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.22479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.22479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Chen, Benhui</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><title>IEEJ transactions on electrical and electronic engineering</title><description>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><subject>Basis functions</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Construction standards</subject><subject>kernel composition</subject><subject>multiple local linear classifiers</subject><subject>nonlinear classification</subject><subject>Partitions</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2rGdxGNVlR-pEkuZLcdxWldJnNoOVTcegWfkSTAEsTHdo3u-c690ALjFaIYRSudB61ma0pyfgQnmBCeUF_j8T-fkElx5v0eIZqQoJqBdwK22rQ7u9Pn-UUqvKxiONmofdA-jsbMVrK2Dne0a02npoGqk96Y2SgZjOzh4023hYZDexNgv44e-ty7AN61CDLdS7aJxDS5q2Xh98zun4PVhtVk-JeuXx-flYp0okhGepGlWlZhzlSssS5pmlCqc5ZJXFSpqLiknXDHGZF3wskKlonHHVLQwx7RkZAruxru9s4dB-yD2dnBdfCkwp4wVOcF5pO5HSjnrvdO16J1ppTsJjMR3myK2KX7ajOx8ZI-m0af_QbFZrcbEFySbex0</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Li, Weite</creator><creator>Zhou, Bo</creator><creator>Chen, Benhui</creator><creator>Hu, Jinglu</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201711</creationdate><title>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</title><author>Li, Weite ; Zhou, Bo ; Chen, Benhui ; Hu, Jinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-226db199c7c1ab42644c167a9dd08f9a4939c555af89bd0bc49a45c8f91914b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basis functions</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Construction standards</topic><topic>kernel composition</topic><topic>multiple local linear classifiers</topic><topic>nonlinear classification</topic><topic>Partitions</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Chen, Benhui</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weite</au><au>Zhou, Bo</au><au>Chen, Benhui</au><au>Hu, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2017-11</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>883</spage><epage>890</epage><pages>883-890</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.22479</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.883-890 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_1945587317 |
source | Access via Wiley Online Library |
subjects | Basis functions Classification Classifiers Construction standards kernel composition multiple local linear classifiers nonlinear classification Partitions support vector machine Support vector machines |
title | A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometry%E2%80%90based%20two%E2%80%90step%20method%20for%20nonlinear%20classification%20using%20quasi%E2%80%90linear%20support%20vector%20machine&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Li,%20Weite&rft.date=2017-11&rft.volume=12&rft.issue=6&rft.spage=883&rft.epage=890&rft.pages=883-890&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.22479&rft_dat=%3Cproquest_cross%3E1945587317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945587317&rft_id=info:pmid/&rfr_iscdi=true |