A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM
Data imbalance occurs on most real‐world classification problems and decreases the performance of classifiers. An oversampling method addresses the imbalance problem by generating synthetic samples to balance the data distribution. However, many of the existing oversampling methods have potential pr...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2017-11, Vol.12 (6), p.891-898 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 6 |
container_start_page | 891 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 12 |
creator | Zhou, Bo Li, Weite Hu, Jinglu |
description | Data imbalance occurs on most real‐world classification problems and decreases the performance of classifiers. An oversampling method addresses the imbalance problem by generating synthetic samples to balance the data distribution. However, many of the existing oversampling methods have potential problems in generating wrong and unnecessary synthetic samples, which makes the learning tasks difficult. This paper proposes a new segmented oversampling method for imbalanced data classification. The input space is first partitioned into several linearly separable local partitions along the potential separation boundary by introducing a bottom‐up, minimal‐spanning‐tree‐based clustering method; an oversampling method is then applied within each local linear partition to prevent the generation of wrong and unnecessary synthetic samples; a quasi‐linear support vector machine is finally used to realize the classification by taking advantages of the local linear partitions. Simulation results on different real‐world datasets show that the proposed segmented oversampling method is effective for imbalanced data classifications. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/tee.22480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1945587224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945587224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-3fcd348e67dd247e4b485cf768df005994671cef4130474c38ef8952a4a8ee263</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpDLyBJSaGtHbsJM5YVaUgFTFQWC3XORdXSdzaCVU3HoFn5ElICWJjuhu-_076EbqmZEQJiccNwCiOuSAnaEBzRiOeC3r6t2fsHF2EsCGEp0yIAZITXMMeB1hXUDdQYPcOPqhqW9p6jSto3lyBjfPYVitVqlp3pFCNwrpUIVhjtWqsq3Ebjn7XqmC_Pj67MCiPn18fL9GZUWWAq985RC93s-X0Plo8zR-mk0WkWcpIxIwuGBeQZkUR8wz4iotEmywVhSEkyXOeZlSD4ZQRnnHNBBiRJ7HiSgDEKRuim_7u1rtdC6GRG9f6unspac6TRGRdK5267ZX2LgQPRm69rZQ_SErksT_Z9Sd_-uvsuLd7W8LhfyiXs1mf-AYA9XLB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945587224</pqid></control><display><type>article</type><title>A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Bo ; Li, Weite ; Hu, Jinglu</creator><creatorcontrib>Zhou, Bo ; Li, Weite ; Hu, Jinglu</creatorcontrib><description>Data imbalance occurs on most real‐world classification problems and decreases the performance of classifiers. An oversampling method addresses the imbalance problem by generating synthetic samples to balance the data distribution. However, many of the existing oversampling methods have potential problems in generating wrong and unnecessary synthetic samples, which makes the learning tasks difficult. This paper proposes a new segmented oversampling method for imbalanced data classification. The input space is first partitioned into several linearly separable local partitions along the potential separation boundary by introducing a bottom‐up, minimal‐spanning‐tree‐based clustering method; an oversampling method is then applied within each local linear partition to prevent the generation of wrong and unnecessary synthetic samples; a quasi‐linear support vector machine is finally used to realize the classification by taking advantages of the local linear partitions. Simulation results on different real‐world datasets show that the proposed segmented oversampling method is effective for imbalanced data classifications. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.22480</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Classification ; Clustering ; imbalanced classification ; kernel composition ; local linear partition ; Oversampling ; oversampling method ; Partitions ; support vector machine ; Support vector machines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.891-898</ispartof><rights>2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3630-3fcd348e67dd247e4b485cf768df005994671cef4130474c38ef8952a4a8ee263</citedby><cites>FETCH-LOGICAL-c3630-3fcd348e67dd247e4b485cf768df005994671cef4130474c38ef8952a4a8ee263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.22480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.22480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><title>A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM</title><title>IEEJ transactions on electrical and electronic engineering</title><description>Data imbalance occurs on most real‐world classification problems and decreases the performance of classifiers. An oversampling method addresses the imbalance problem by generating synthetic samples to balance the data distribution. However, many of the existing oversampling methods have potential problems in generating wrong and unnecessary synthetic samples, which makes the learning tasks difficult. This paper proposes a new segmented oversampling method for imbalanced data classification. The input space is first partitioned into several linearly separable local partitions along the potential separation boundary by introducing a bottom‐up, minimal‐spanning‐tree‐based clustering method; an oversampling method is then applied within each local linear partition to prevent the generation of wrong and unnecessary synthetic samples; a quasi‐linear support vector machine is finally used to realize the classification by taking advantages of the local linear partitions. Simulation results on different real‐world datasets show that the proposed segmented oversampling method is effective for imbalanced data classifications. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><subject>Classification</subject><subject>Clustering</subject><subject>imbalanced classification</subject><subject>kernel composition</subject><subject>local linear partition</subject><subject>Oversampling</subject><subject>oversampling method</subject><subject>Partitions</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpDLyBJSaGtHbsJM5YVaUgFTFQWC3XORdXSdzaCVU3HoFn5ElICWJjuhu-_076EbqmZEQJiccNwCiOuSAnaEBzRiOeC3r6t2fsHF2EsCGEp0yIAZITXMMeB1hXUDdQYPcOPqhqW9p6jSto3lyBjfPYVitVqlp3pFCNwrpUIVhjtWqsq3Ebjn7XqmC_Pj67MCiPn18fL9GZUWWAq985RC93s-X0Plo8zR-mk0WkWcpIxIwuGBeQZkUR8wz4iotEmywVhSEkyXOeZlSD4ZQRnnHNBBiRJ7HiSgDEKRuim_7u1rtdC6GRG9f6unspac6TRGRdK5267ZX2LgQPRm69rZQ_SErksT_Z9Sd_-uvsuLd7W8LhfyiXs1mf-AYA9XLB</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Zhou, Bo</creator><creator>Li, Weite</creator><creator>Hu, Jinglu</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201711</creationdate><title>A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM</title><author>Zhou, Bo ; Li, Weite ; Hu, Jinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-3fcd348e67dd247e4b485cf768df005994671cef4130474c38ef8952a4a8ee263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>imbalanced classification</topic><topic>kernel composition</topic><topic>local linear partition</topic><topic>Oversampling</topic><topic>oversampling method</topic><topic>Partitions</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Bo</au><au>Li, Weite</au><au>Hu, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2017-11</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>891</spage><epage>898</epage><pages>891-898</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>Data imbalance occurs on most real‐world classification problems and decreases the performance of classifiers. An oversampling method addresses the imbalance problem by generating synthetic samples to balance the data distribution. However, many of the existing oversampling methods have potential problems in generating wrong and unnecessary synthetic samples, which makes the learning tasks difficult. This paper proposes a new segmented oversampling method for imbalanced data classification. The input space is first partitioned into several linearly separable local partitions along the potential separation boundary by introducing a bottom‐up, minimal‐spanning‐tree‐based clustering method; an oversampling method is then applied within each local linear partition to prevent the generation of wrong and unnecessary synthetic samples; a quasi‐linear support vector machine is finally used to realize the classification by taking advantages of the local linear partitions. Simulation results on different real‐world datasets show that the proposed segmented oversampling method is effective for imbalanced data classifications. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.22480</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2017-11, Vol.12 (6), p.891-898 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_1945587224 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Classification Clustering imbalanced classification kernel composition local linear partition Oversampling oversampling method Partitions support vector machine Support vector machines |
title | A new segmented oversampling method for imbalanced data classification using quasi‐linear SVM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20segmented%20oversampling%20method%20for%20imbalanced%20data%20classification%20using%20quasi%E2%80%90linear%20SVM&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Zhou,%20Bo&rft.date=2017-11&rft.volume=12&rft.issue=6&rft.spage=891&rft.epage=898&rft.pages=891-898&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.22480&rft_dat=%3Cproquest_cross%3E1945587224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945587224&rft_id=info:pmid/&rfr_iscdi=true |