Criteria of Identity and Structuralist Ontology

In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophia mathematica 2008-10, Vol.16 (3), p.388-396
Hauptverfasser: Leitgeb, Hannes, Ladyman, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 3
container_start_page 388
container_title Philosophia mathematica
container_volume 16
creator Leitgeb, Hannes
Ladyman, James
description In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.
doi_str_mv 10.1093/philmat/nkm039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194548441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/philmat/nkm039</oup_id><sourcerecordid>1567492951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKdXz8Wbh24vTdImRxm6DodDpiJeQtYm2q1rapKC---tVLx6ejz4fr_H-xC6xDDBIMi0_ajqvQrTZrcHIo7QCGeUximF9BiNAAiOOWBxis683_ZrKjgfoenMVUG7SkXWRItSN6EKh0g1ZbQOritC51Rd-RCtmmBr-344RydG1V5f_M4xer67fZrl8XI1X8xulnFBCA8xU0wZYEYXKc4SY1LQlJYACScMlMhMyZmiQmmVFNhQluhECwp4sxFQllSRMboaeltnPzvtg9zazjX9SYkFZZRTintoMkCFs947bWTrqr1yB4lB_jiRv07k4KQPXA8B27X_s_HA9u_rrz9auZ1MM5Ixmb--yTx_XK7n9w_yhXwDcMV0uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194548441</pqid></control><display><type>article</type><title>Criteria of Identity and Structuralist Ontology</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Leitgeb, Hannes ; Ladyman, James</creator><creatorcontrib>Leitgeb, Hannes ; Ladyman, James</creatorcontrib><description>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</description><identifier>ISSN: 0031-8019</identifier><identifier>EISSN: 1744-6406</identifier><identifier>DOI: 10.1093/philmat/nkm039</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Mathematics ; Ontology ; Philosophy ; Theory</subject><ispartof>Philosophia mathematica, 2008-10, Vol.16 (3), p.388-396</ispartof><rights>Oxford University Press © The Author [2008]. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author [2008]. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</citedby><cites>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1583,27922,27923</link.rule.ids></links><search><creatorcontrib>Leitgeb, Hannes</creatorcontrib><creatorcontrib>Ladyman, James</creatorcontrib><title>Criteria of Identity and Structuralist Ontology</title><title>Philosophia mathematica</title><addtitle>Philos Math</addtitle><addtitle>Philos Math</addtitle><description>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</description><subject>Mathematics</subject><subject>Ontology</subject><subject>Philosophy</subject><subject>Theory</subject><issn>0031-8019</issn><issn>1744-6406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKdXz8Wbh24vTdImRxm6DodDpiJeQtYm2q1rapKC---tVLx6ejz4fr_H-xC6xDDBIMi0_ajqvQrTZrcHIo7QCGeUximF9BiNAAiOOWBxis683_ZrKjgfoenMVUG7SkXWRItSN6EKh0g1ZbQOritC51Rd-RCtmmBr-344RydG1V5f_M4xer67fZrl8XI1X8xulnFBCA8xU0wZYEYXKc4SY1LQlJYACScMlMhMyZmiQmmVFNhQluhECwp4sxFQllSRMboaeltnPzvtg9zazjX9SYkFZZRTintoMkCFs947bWTrqr1yB4lB_jiRv07k4KQPXA8B27X_s_HA9u_rrz9auZ1MM5Ixmb--yTx_XK7n9w_yhXwDcMV0uw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Leitgeb, Hannes</creator><creator>Ladyman, James</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20081001</creationdate><title>Criteria of Identity and Structuralist Ontology</title><author>Leitgeb, Hannes ; Ladyman, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Ontology</topic><topic>Philosophy</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitgeb, Hannes</creatorcontrib><creatorcontrib>Ladyman, James</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Philosophia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitgeb, Hannes</au><au>Ladyman, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criteria of Identity and Structuralist Ontology</atitle><jtitle>Philosophia mathematica</jtitle><stitle>Philos Math</stitle><addtitle>Philos Math</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>16</volume><issue>3</issue><spage>388</spage><epage>396</epage><pages>388-396</pages><issn>0031-8019</issn><eissn>1744-6406</eissn><abstract>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/philmat/nkm039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8019
ispartof Philosophia mathematica, 2008-10, Vol.16 (3), p.388-396
issn 0031-8019
1744-6406
language eng
recordid cdi_proquest_journals_194548441
source Oxford University Press Journals All Titles (1996-Current)
subjects Mathematics
Ontology
Philosophy
Theory
title Criteria of Identity and Structuralist Ontology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criteria%20of%20Identity%20and%20Structuralist%20Ontology&rft.jtitle=Philosophia%20mathematica&rft.au=Leitgeb,%20Hannes&rft.date=2008-10-01&rft.volume=16&rft.issue=3&rft.spage=388&rft.epage=396&rft.pages=388-396&rft.issn=0031-8019&rft.eissn=1744-6406&rft_id=info:doi/10.1093/philmat/nkm039&rft_dat=%3Cproquest_cross%3E1567492951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194548441&rft_id=info:pmid/&rft_oup_id=10.1093/philmat/nkm039&rfr_iscdi=true