Criteria of Identity and Structuralist Ontology
In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate co...
Gespeichert in:
Veröffentlicht in: | Philosophia mathematica 2008-10, Vol.16 (3), p.388-396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 3 |
container_start_page | 388 |
container_title | Philosophia mathematica |
container_volume | 16 |
creator | Leitgeb, Hannes Ladyman, James |
description | In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view. |
doi_str_mv | 10.1093/philmat/nkm039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194548441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/philmat/nkm039</oup_id><sourcerecordid>1567492951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKdXz8Wbh24vTdImRxm6DodDpiJeQtYm2q1rapKC---tVLx6ejz4fr_H-xC6xDDBIMi0_ajqvQrTZrcHIo7QCGeUximF9BiNAAiOOWBxis683_ZrKjgfoenMVUG7SkXWRItSN6EKh0g1ZbQOritC51Rd-RCtmmBr-344RydG1V5f_M4xer67fZrl8XI1X8xulnFBCA8xU0wZYEYXKc4SY1LQlJYACScMlMhMyZmiQmmVFNhQluhECwp4sxFQllSRMboaeltnPzvtg9zazjX9SYkFZZRTintoMkCFs947bWTrqr1yB4lB_jiRv07k4KQPXA8B27X_s_HA9u_rrz9auZ1MM5Ixmb--yTx_XK7n9w_yhXwDcMV0uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194548441</pqid></control><display><type>article</type><title>Criteria of Identity and Structuralist Ontology</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Leitgeb, Hannes ; Ladyman, James</creator><creatorcontrib>Leitgeb, Hannes ; Ladyman, James</creatorcontrib><description>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</description><identifier>ISSN: 0031-8019</identifier><identifier>EISSN: 1744-6406</identifier><identifier>DOI: 10.1093/philmat/nkm039</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Mathematics ; Ontology ; Philosophy ; Theory</subject><ispartof>Philosophia mathematica, 2008-10, Vol.16 (3), p.388-396</ispartof><rights>Oxford University Press © The Author [2008]. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author [2008]. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</citedby><cites>FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1583,27922,27923</link.rule.ids></links><search><creatorcontrib>Leitgeb, Hannes</creatorcontrib><creatorcontrib>Ladyman, James</creatorcontrib><title>Criteria of Identity and Structuralist Ontology</title><title>Philosophia mathematica</title><addtitle>Philos Math</addtitle><addtitle>Philos Math</addtitle><description>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</description><subject>Mathematics</subject><subject>Ontology</subject><subject>Philosophy</subject><subject>Theory</subject><issn>0031-8019</issn><issn>1744-6406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOKdXz8Wbh24vTdImRxm6DodDpiJeQtYm2q1rapKC---tVLx6ejz4fr_H-xC6xDDBIMi0_ajqvQrTZrcHIo7QCGeUximF9BiNAAiOOWBxis683_ZrKjgfoenMVUG7SkXWRItSN6EKh0g1ZbQOritC51Rd-RCtmmBr-344RydG1V5f_M4xer67fZrl8XI1X8xulnFBCA8xU0wZYEYXKc4SY1LQlJYACScMlMhMyZmiQmmVFNhQluhECwp4sxFQllSRMboaeltnPzvtg9zazjX9SYkFZZRTintoMkCFs947bWTrqr1yB4lB_jiRv07k4KQPXA8B27X_s_HA9u_rrz9auZ1MM5Ixmb--yTx_XK7n9w_yhXwDcMV0uw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Leitgeb, Hannes</creator><creator>Ladyman, James</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20081001</creationdate><title>Criteria of Identity and Structuralist Ontology</title><author>Leitgeb, Hannes ; Ladyman, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5a5af05fec6172ff60e44d0028350a97fd85a49aea2c1f452e2e9401bb90dd4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Ontology</topic><topic>Philosophy</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitgeb, Hannes</creatorcontrib><creatorcontrib>Ladyman, James</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Philosophia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitgeb, Hannes</au><au>Ladyman, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criteria of Identity and Structuralist Ontology</atitle><jtitle>Philosophia mathematica</jtitle><stitle>Philos Math</stitle><addtitle>Philos Math</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>16</volume><issue>3</issue><spage>388</spage><epage>396</epage><pages>388-396</pages><issn>0031-8019</issn><eissn>1744-6406</eissn><abstract>In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be accounted for by anything other than the structure itself and that (ii) mathematical practice provides evidence for this view.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/philmat/nkm039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8019 |
ispartof | Philosophia mathematica, 2008-10, Vol.16 (3), p.388-396 |
issn | 0031-8019 1744-6406 |
language | eng |
recordid | cdi_proquest_journals_194548441 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Mathematics Ontology Philosophy Theory |
title | Criteria of Identity and Structuralist Ontology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criteria%20of%20Identity%20and%20Structuralist%20Ontology&rft.jtitle=Philosophia%20mathematica&rft.au=Leitgeb,%20Hannes&rft.date=2008-10-01&rft.volume=16&rft.issue=3&rft.spage=388&rft.epage=396&rft.pages=388-396&rft.issn=0031-8019&rft.eissn=1744-6406&rft_id=info:doi/10.1093/philmat/nkm039&rft_dat=%3Cproquest_cross%3E1567492951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194548441&rft_id=info:pmid/&rft_oup_id=10.1093/philmat/nkm039&rfr_iscdi=true |