Mathematical Form in the World
This essay explores an ideal notion of form (mathematical structure) that embraces logical, phenomenological, and ontological form. Husserl envisioned a correlation among forms of expression, thought, meaning, and object—positing ideal forms on all these levels. The most puzzling formal entities Hus...
Gespeichert in:
Veröffentlicht in: | Philosophia mathematica 2002-06, Vol.10 (2), p.102-129 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 2 |
container_start_page | 102 |
container_title | Philosophia mathematica |
container_volume | 10 |
creator | SMITH, DAVID WOODRUFF |
description | This essay explores an ideal notion of form (mathematical structure) that embraces logical, phenomenological, and ontological form. Husserl envisioned a correlation among forms of expression, thought, meaning, and object—positing ideal forms on all these levels. The most puzzling formal entities Husserl discussed were those he called ‘manifolds’. These manifolds, I propose, are forms of complex states of affairs or partial possible worlds representable by forms of theories (compare structuralism). Accordingly, I sketch an intentionality-based semantics correlating these four Husserlian levels of form—thereby integrating logic, phenomenology, and ontology. |
doi_str_mv | 10.1093/philmat/10.2.102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194536136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>588013091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1536-86bd2fef5e826cbba3d007a3c707569aafeab69412606ee1ea916324507111c93</originalsourceid><addsrcrecordid>eNo9UMFKw0AUXETBWr17kuA99r3d7NvsUYM1QkUQRfGybNINTU2bupuC_r1bWry8YYaZNzCMXSLcIGgx2SzabmWHSeQ8KvyIjVBlWUoZ0DEbAQhMc0B9ys5CWEZKOs9H7OrJDgsXg21tu2Ta-1XSrpMoJe-97-bn7KSxXXAXBxyzt-n9a1Gms-eHx-J2ltYoBaU5VXPeuEa6nFNdVVbMAZQVtQIlSVvbOFuRzpATkHPorEYSPJOgELHWYsyu9383vv_eujCYZb_161hpUGexAgVFE-xNte9D8K4xG9-urP81CGY3gjmMsOM8Hh4j6T7ShsH9_Put_zKkhJKm_Pg0UJRS6pc7U4g__2td9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194536136</pqid></control><display><type>article</type><title>Mathematical Form in the World</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>SMITH, DAVID WOODRUFF</creator><creatorcontrib>SMITH, DAVID WOODRUFF</creatorcontrib><description>This essay explores an ideal notion of form (mathematical structure) that embraces logical, phenomenological, and ontological form. Husserl envisioned a correlation among forms of expression, thought, meaning, and object—positing ideal forms on all these levels. The most puzzling formal entities Husserl discussed were those he called ‘manifolds’. These manifolds, I propose, are forms of complex states of affairs or partial possible worlds representable by forms of theories (compare structuralism). Accordingly, I sketch an intentionality-based semantics correlating these four Husserlian levels of form—thereby integrating logic, phenomenology, and ontology.</description><identifier>ISSN: 0031-8019</identifier><identifier>EISSN: 1744-6406</identifier><identifier>DOI: 10.1093/philmat/10.2.102</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Husserl, Edmund ; Logic ; Mathematics ; Metaphysics ; Phenomenology ; Philosophy</subject><ispartof>Philosophia mathematica, 2002-06, Vol.10 (2), p.102-129</ispartof><rights>Copyright Philosophia Mathematica Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1536-86bd2fef5e826cbba3d007a3c707569aafeab69412606ee1ea916324507111c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>SMITH, DAVID WOODRUFF</creatorcontrib><title>Mathematical Form in the World</title><title>Philosophia mathematica</title><description>This essay explores an ideal notion of form (mathematical structure) that embraces logical, phenomenological, and ontological form. Husserl envisioned a correlation among forms of expression, thought, meaning, and object—positing ideal forms on all these levels. The most puzzling formal entities Husserl discussed were those he called ‘manifolds’. These manifolds, I propose, are forms of complex states of affairs or partial possible worlds representable by forms of theories (compare structuralism). Accordingly, I sketch an intentionality-based semantics correlating these four Husserlian levels of form—thereby integrating logic, phenomenology, and ontology.</description><subject>Husserl, Edmund</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Phenomenology</subject><subject>Philosophy</subject><issn>0031-8019</issn><issn>1744-6406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo9UMFKw0AUXETBWr17kuA99r3d7NvsUYM1QkUQRfGybNINTU2bupuC_r1bWry8YYaZNzCMXSLcIGgx2SzabmWHSeQ8KvyIjVBlWUoZ0DEbAQhMc0B9ys5CWEZKOs9H7OrJDgsXg21tu2Ta-1XSrpMoJe-97-bn7KSxXXAXBxyzt-n9a1Gms-eHx-J2ltYoBaU5VXPeuEa6nFNdVVbMAZQVtQIlSVvbOFuRzpATkHPorEYSPJOgELHWYsyu9383vv_eujCYZb_161hpUGexAgVFE-xNte9D8K4xG9-urP81CGY3gjmMsOM8Hh4j6T7ShsH9_Put_zKkhJKm_Pg0UJRS6pc7U4g__2td9A</recordid><startdate>200206</startdate><enddate>200206</enddate><creator>SMITH, DAVID WOODRUFF</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200206</creationdate><title>Mathematical Form in the World</title><author>SMITH, DAVID WOODRUFF</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1536-86bd2fef5e826cbba3d007a3c707569aafeab69412606ee1ea916324507111c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Husserl, Edmund</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Phenomenology</topic><topic>Philosophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMITH, DAVID WOODRUFF</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Philosophia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMITH, DAVID WOODRUFF</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Form in the World</atitle><jtitle>Philosophia mathematica</jtitle><date>2002-06</date><risdate>2002</risdate><volume>10</volume><issue>2</issue><spage>102</spage><epage>129</epage><pages>102-129</pages><issn>0031-8019</issn><eissn>1744-6406</eissn><abstract>This essay explores an ideal notion of form (mathematical structure) that embraces logical, phenomenological, and ontological form. Husserl envisioned a correlation among forms of expression, thought, meaning, and object—positing ideal forms on all these levels. The most puzzling formal entities Husserl discussed were those he called ‘manifolds’. These manifolds, I propose, are forms of complex states of affairs or partial possible worlds representable by forms of theories (compare structuralism). Accordingly, I sketch an intentionality-based semantics correlating these four Husserlian levels of form—thereby integrating logic, phenomenology, and ontology.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/philmat/10.2.102</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8019 |
ispartof | Philosophia mathematica, 2002-06, Vol.10 (2), p.102-129 |
issn | 0031-8019 1744-6406 |
language | eng |
recordid | cdi_proquest_journals_194536136 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Husserl, Edmund Logic Mathematics Metaphysics Phenomenology Philosophy |
title | Mathematical Form in the World |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Form%20in%20the%20World&rft.jtitle=Philosophia%20mathematica&rft.au=SMITH,%20DAVID%20WOODRUFF&rft.date=2002-06&rft.volume=10&rft.issue=2&rft.spage=102&rft.epage=129&rft.pages=102-129&rft.issn=0031-8019&rft.eissn=1744-6406&rft_id=info:doi/10.1093/philmat/10.2.102&rft_dat=%3Cproquest_cross%3E588013091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194536136&rft_id=info:pmid/&rfr_iscdi=true |