Multiple Reductions Revisited
Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). Ther...
Gespeichert in:
Veröffentlicht in: | Philosophia mathematica 2008-06, Vol.16 (2), p.244-255 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 2 |
container_start_page | 244 |
container_title | Philosophia mathematica |
container_volume | 16 |
creator | Clarke-Doane, Justin |
description | Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument against reductionism that is of comparable severity to the now widely recognized difficulty with his general argument against realism. |
doi_str_mv | 10.1093/philmat/nkm034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_194498884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/philmat/nkm034</oup_id><sourcerecordid>1493899541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ab8f5eccfa28b02c87576c7285e01d1fb42680093d1e324801ba0811c4152ef93</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXb4J489Atr0nb16MM55SpOFTES0jTFLN1a5ekov-9kQ6vnt734Pe99_ERcgp0BDRn4_bD1Gvpx5vVmjK-RwaQcR6lnKb7ZEApgwgp5IfkyLllWNMccUDO7rvam7bW5wtddsqbZuOC_DTOeF0ek4NK1k6f7OaQvEyvnyezaP54czu5mkeKMfSRLLBKtFKVjLGgscIsyVKVxZhoCiVUBY9TpCFjCZrFPMQoJEUAxSGJdZWzIbno77a22XbaebFsOrsJLwXknIekyAM06iFlG-esrkRrzVrabwFU_DYgdg2IvoFguOwNTdf-z0Y9a5zXX3-0tCuRZixLxOztXTzh3fSVPSwEsh-K_2z_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194498884</pqid></control><display><type>article</type><title>Multiple Reductions Revisited</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Clarke-Doane, Justin</creator><creatorcontrib>Clarke-Doane, Justin</creatorcontrib><description>Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument against reductionism that is of comparable severity to the now widely recognized difficulty with his general argument against realism.</description><identifier>ISSN: 0031-8019</identifier><identifier>EISSN: 1744-6406</identifier><identifier>DOI: 10.1093/philmat/nkm034</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><ispartof>Philosophia mathematica, 2008-06, Vol.16 (2), p.244-255</ispartof><rights>Copyright © The Author 2008. Published by Oxford University Press. 2008</rights><rights>Copyright © The Author 2008. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ab8f5eccfa28b02c87576c7285e01d1fb42680093d1e324801ba0811c4152ef93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1581,27911,27912</link.rule.ids></links><search><creatorcontrib>Clarke-Doane, Justin</creatorcontrib><title>Multiple Reductions Revisited</title><title>Philosophia mathematica</title><addtitle>Philos Math</addtitle><addtitle>Philos Math</addtitle><description>Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument against reductionism that is of comparable severity to the now widely recognized difficulty with his general argument against realism.</description><issn>0031-8019</issn><issn>1744-6406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXb4J489Atr0nb16MM55SpOFTES0jTFLN1a5ekov-9kQ6vnt734Pe99_ERcgp0BDRn4_bD1Gvpx5vVmjK-RwaQcR6lnKb7ZEApgwgp5IfkyLllWNMccUDO7rvam7bW5wtddsqbZuOC_DTOeF0ek4NK1k6f7OaQvEyvnyezaP54czu5mkeKMfSRLLBKtFKVjLGgscIsyVKVxZhoCiVUBY9TpCFjCZrFPMQoJEUAxSGJdZWzIbno77a22XbaebFsOrsJLwXknIekyAM06iFlG-esrkRrzVrabwFU_DYgdg2IvoFguOwNTdf-z0Y9a5zXX3-0tCuRZixLxOztXTzh3fSVPSwEsh-K_2z_</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Clarke-Doane, Justin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20080601</creationdate><title>Multiple Reductions Revisited</title><author>Clarke-Doane, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ab8f5eccfa28b02c87576c7285e01d1fb42680093d1e324801ba0811c4152ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke-Doane, Justin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Philosophia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke-Doane, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Reductions Revisited</atitle><jtitle>Philosophia mathematica</jtitle><stitle>Philos Math</stitle><addtitle>Philos Math</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>16</volume><issue>2</issue><spage>244</spage><epage>255</epage><pages>244-255</pages><issn>0031-8019</issn><eissn>1744-6406</eissn><abstract>Paul Benacerraf's argument from multiple reductions consists of a general argument against realism about the natural numbers (the view that numbers are objects), and a limited argument against reductionism about them (the view that numbers are identical with prima facie distinct entities). There is a widely recognized and severe difficulty with the former argument, but no comparably recognized such difficulty with the latter. Even so, reductionism in mathematics continues to thrive. In this paper I develop a difficulty for Benacerraf's argument against reductionism that is of comparable severity to the now widely recognized difficulty with his general argument against realism.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/philmat/nkm034</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8019 |
ispartof | Philosophia mathematica, 2008-06, Vol.16 (2), p.244-255 |
issn | 0031-8019 1744-6406 |
language | eng |
recordid | cdi_proquest_journals_194498884 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Multiple Reductions Revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Reductions%20Revisited&rft.jtitle=Philosophia%20mathematica&rft.au=Clarke-Doane,%20Justin&rft.date=2008-06-01&rft.volume=16&rft.issue=2&rft.spage=244&rft.epage=255&rft.pages=244-255&rft.issn=0031-8019&rft.eissn=1744-6406&rft_id=info:doi/10.1093/philmat/nkm034&rft_dat=%3Cproquest_cross%3E1493899541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194498884&rft_id=info:pmid/&rft_oup_id=10.1093/philmat/nkm034&rfr_iscdi=true |