Understanding Human-Machine Networks: A Cross-Disciplinary Survey
In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2017-04, Vol.50 (1), p.1-35 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 50 |
creator | Tsvetkova, Milena Yasseri, Taha Meyer, Eric T. Pickering, J. Brian Engen, Vegard Walland, Paul Lüders, Marika Følstad, Asbjørn Bravos, George |
description | In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends. |
doi_str_mv | 10.1145/3039868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944260668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1944260668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMouFbxLxQUPEVf8rIv2aMUa4WqF3sO2WxWt9psTbaI_96V9jSH-ZgZhrFLAbdCqPIOAStD5ogVoiw116jEMSsACTggwCk7y3kNAFIJKtj1KjYh5cHFpovv08Vu4yJ_dv6ji2H6EoafPn3mc3bSuq8cLg46Yav5w9tswZevj0-z-yX3knDgja9VAK1EA6Wsau2ATEuuxYCVd2g8jL4aN1IwSFIKDcZVFMg1tdOKcMKu9rnb1H_vQh7sut-lOFZaUSklCYjMSN3sKZ_6nFNo7TZ1G5d-rQD7f4E9XIB_TR9LGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944260668</pqid></control><display><type>article</type><title>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</title><source>ACM Digital Library Complete</source><creator>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</creator><creatorcontrib>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</creatorcontrib><description>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3039868</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Artificial intelligence ; Computer & video games ; Computer science ; Digital media ; Impact analysis ; Information systems ; Information technology ; Networks ; Search engines ; Social factors ; Studies</subject><ispartof>ACM computing surveys, 2017-04, Vol.50 (1), p.1-35</ispartof><rights>Copyright Association for Computing Machinery Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</cites><orcidid>0000-0002-3552-108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tsvetkova, Milena</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Meyer, Eric T.</creatorcontrib><creatorcontrib>Pickering, J. Brian</creatorcontrib><creatorcontrib>Engen, Vegard</creatorcontrib><creatorcontrib>Walland, Paul</creatorcontrib><creatorcontrib>Lüders, Marika</creatorcontrib><creatorcontrib>Følstad, Asbjørn</creatorcontrib><creatorcontrib>Bravos, George</creatorcontrib><title>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</title><title>ACM computing surveys</title><description>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</description><subject>Artificial intelligence</subject><subject>Computer & video games</subject><subject>Computer science</subject><subject>Digital media</subject><subject>Impact analysis</subject><subject>Information systems</subject><subject>Information technology</subject><subject>Networks</subject><subject>Search engines</subject><subject>Social factors</subject><subject>Studies</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEUhIMouFbxLxQUPEVf8rIv2aMUa4WqF3sO2WxWt9psTbaI_96V9jSH-ZgZhrFLAbdCqPIOAStD5ogVoiw116jEMSsACTggwCk7y3kNAFIJKtj1KjYh5cHFpovv08Vu4yJ_dv6ji2H6EoafPn3mc3bSuq8cLg46Yav5w9tswZevj0-z-yX3knDgja9VAK1EA6Wsau2ATEuuxYCVd2g8jL4aN1IwSFIKDcZVFMg1tdOKcMKu9rnb1H_vQh7sut-lOFZaUSklCYjMSN3sKZ_6nFNo7TZ1G5d-rQD7f4E9XIB_TR9LGg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tsvetkova, Milena</creator><creator>Yasseri, Taha</creator><creator>Meyer, Eric T.</creator><creator>Pickering, J. Brian</creator><creator>Engen, Vegard</creator><creator>Walland, Paul</creator><creator>Lüders, Marika</creator><creator>Følstad, Asbjørn</creator><creator>Bravos, George</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3552-108X</orcidid></search><sort><creationdate>20170401</creationdate><title>Understanding Human-Machine Networks</title><author>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computer & video games</topic><topic>Computer science</topic><topic>Digital media</topic><topic>Impact analysis</topic><topic>Information systems</topic><topic>Information technology</topic><topic>Networks</topic><topic>Search engines</topic><topic>Social factors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsvetkova, Milena</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Meyer, Eric T.</creatorcontrib><creatorcontrib>Pickering, J. Brian</creatorcontrib><creatorcontrib>Engen, Vegard</creatorcontrib><creatorcontrib>Walland, Paul</creatorcontrib><creatorcontrib>Lüders, Marika</creatorcontrib><creatorcontrib>Følstad, Asbjørn</creatorcontrib><creatorcontrib>Bravos, George</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsvetkova, Milena</au><au>Yasseri, Taha</au><au>Meyer, Eric T.</au><au>Pickering, J. Brian</au><au>Engen, Vegard</au><au>Walland, Paul</au><au>Lüders, Marika</au><au>Følstad, Asbjørn</au><au>Bravos, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</atitle><jtitle>ACM computing surveys</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>50</volume><issue>1</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3039868</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-3552-108X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2017-04, Vol.50 (1), p.1-35 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_1944260668 |
source | ACM Digital Library Complete |
subjects | Artificial intelligence Computer & video games Computer science Digital media Impact analysis Information systems Information technology Networks Search engines Social factors Studies |
title | Understanding Human-Machine Networks: A Cross-Disciplinary Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Human-Machine%20Networks:%20A%20Cross-Disciplinary%20Survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Tsvetkova,%20Milena&rft.date=2017-04-01&rft.volume=50&rft.issue=1&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3039868&rft_dat=%3Cproquest_cross%3E1944260668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944260668&rft_id=info:pmid/&rfr_iscdi=true |