Understanding Human-Machine Networks: A Cross-Disciplinary Survey

In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2017-04, Vol.50 (1), p.1-35
Hauptverfasser: Tsvetkova, Milena, Yasseri, Taha, Meyer, Eric T., Pickering, J. Brian, Engen, Vegard, Walland, Paul, Lüders, Marika, Følstad, Asbjørn, Bravos, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 1
container_title ACM computing surveys
container_volume 50
creator Tsvetkova, Milena
Yasseri, Taha
Meyer, Eric T.
Pickering, J. Brian
Engen, Vegard
Walland, Paul
Lüders, Marika
Følstad, Asbjørn
Bravos, George
description In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.
doi_str_mv 10.1145/3039868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944260668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1944260668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMouFbxLxQUPEVf8rIv2aMUa4WqF3sO2WxWt9psTbaI_96V9jSH-ZgZhrFLAbdCqPIOAStD5ogVoiw116jEMSsACTggwCk7y3kNAFIJKtj1KjYh5cHFpovv08Vu4yJ_dv6ji2H6EoafPn3mc3bSuq8cLg46Yav5w9tswZevj0-z-yX3knDgja9VAK1EA6Wsau2ATEuuxYCVd2g8jL4aN1IwSFIKDcZVFMg1tdOKcMKu9rnb1H_vQh7sut-lOFZaUSklCYjMSN3sKZ_6nFNo7TZ1G5d-rQD7f4E9XIB_TR9LGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944260668</pqid></control><display><type>article</type><title>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</title><source>ACM Digital Library Complete</source><creator>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</creator><creatorcontrib>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</creatorcontrib><description>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3039868</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Artificial intelligence ; Computer &amp; video games ; Computer science ; Digital media ; Impact analysis ; Information systems ; Information technology ; Networks ; Search engines ; Social factors ; Studies</subject><ispartof>ACM computing surveys, 2017-04, Vol.50 (1), p.1-35</ispartof><rights>Copyright Association for Computing Machinery Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</cites><orcidid>0000-0002-3552-108X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tsvetkova, Milena</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Meyer, Eric T.</creatorcontrib><creatorcontrib>Pickering, J. Brian</creatorcontrib><creatorcontrib>Engen, Vegard</creatorcontrib><creatorcontrib>Walland, Paul</creatorcontrib><creatorcontrib>Lüders, Marika</creatorcontrib><creatorcontrib>Følstad, Asbjørn</creatorcontrib><creatorcontrib>Bravos, George</creatorcontrib><title>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</title><title>ACM computing surveys</title><description>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</description><subject>Artificial intelligence</subject><subject>Computer &amp; video games</subject><subject>Computer science</subject><subject>Digital media</subject><subject>Impact analysis</subject><subject>Information systems</subject><subject>Information technology</subject><subject>Networks</subject><subject>Search engines</subject><subject>Social factors</subject><subject>Studies</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEUhIMouFbxLxQUPEVf8rIv2aMUa4WqF3sO2WxWt9psTbaI_96V9jSH-ZgZhrFLAbdCqPIOAStD5ogVoiw116jEMSsACTggwCk7y3kNAFIJKtj1KjYh5cHFpovv08Vu4yJ_dv6ji2H6EoafPn3mc3bSuq8cLg46Yav5w9tswZevj0-z-yX3knDgja9VAK1EA6Wsau2ATEuuxYCVd2g8jL4aN1IwSFIKDcZVFMg1tdOKcMKu9rnb1H_vQh7sut-lOFZaUSklCYjMSN3sKZ_6nFNo7TZ1G5d-rQD7f4E9XIB_TR9LGg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tsvetkova, Milena</creator><creator>Yasseri, Taha</creator><creator>Meyer, Eric T.</creator><creator>Pickering, J. Brian</creator><creator>Engen, Vegard</creator><creator>Walland, Paul</creator><creator>Lüders, Marika</creator><creator>Følstad, Asbjørn</creator><creator>Bravos, George</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3552-108X</orcidid></search><sort><creationdate>20170401</creationdate><title>Understanding Human-Machine Networks</title><author>Tsvetkova, Milena ; Yasseri, Taha ; Meyer, Eric T. ; Pickering, J. Brian ; Engen, Vegard ; Walland, Paul ; Lüders, Marika ; Følstad, Asbjørn ; Bravos, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-dcb4e0741d0529b7a068f6af3e39ca38c0b4e41456e836221708a96e6adba7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computer &amp; video games</topic><topic>Computer science</topic><topic>Digital media</topic><topic>Impact analysis</topic><topic>Information systems</topic><topic>Information technology</topic><topic>Networks</topic><topic>Search engines</topic><topic>Social factors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsvetkova, Milena</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Meyer, Eric T.</creatorcontrib><creatorcontrib>Pickering, J. Brian</creatorcontrib><creatorcontrib>Engen, Vegard</creatorcontrib><creatorcontrib>Walland, Paul</creatorcontrib><creatorcontrib>Lüders, Marika</creatorcontrib><creatorcontrib>Følstad, Asbjørn</creatorcontrib><creatorcontrib>Bravos, George</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsvetkova, Milena</au><au>Yasseri, Taha</au><au>Meyer, Eric T.</au><au>Pickering, J. Brian</au><au>Engen, Vegard</au><au>Walland, Paul</au><au>Lüders, Marika</au><au>Følstad, Asbjørn</au><au>Bravos, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Human-Machine Networks: A Cross-Disciplinary Survey</atitle><jtitle>ACM computing surveys</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>50</volume><issue>1</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3039868</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-3552-108X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2017-04, Vol.50 (1), p.1-35
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_1944260668
source ACM Digital Library Complete
subjects Artificial intelligence
Computer & video games
Computer science
Digital media
Impact analysis
Information systems
Information technology
Networks
Search engines
Social factors
Studies
title Understanding Human-Machine Networks: A Cross-Disciplinary Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Human-Machine%20Networks:%20A%20Cross-Disciplinary%20Survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Tsvetkova,%20Milena&rft.date=2017-04-01&rft.volume=50&rft.issue=1&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3039868&rft_dat=%3Cproquest_cross%3E1944260668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944260668&rft_id=info:pmid/&rfr_iscdi=true