Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model

This paper presents a study on the effect of solidity and airfoil profile on the performance of Vertical Axis Wind Turbines (VAWTs). A 1.1 kW commercially viable Darrieus VAWT was studied using ANSYS Fluent. Four different airfoils – NACA 0012, NACA 0015, NACA 0030 and AIR 001 – were considered in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2017-08, Vol.133, p.179-190
Hauptverfasser: Subramanian, Abhishek, Yogesh, S. Arun, Sivanandan, Hrishikesh, Giri, Abhijit, Vasudevan, Madhavan, Mugundhan, Vivek, Velamati, Ratna Kishore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 179
container_title Energy (Oxford)
container_volume 133
creator Subramanian, Abhishek
Yogesh, S. Arun
Sivanandan, Hrishikesh
Giri, Abhijit
Vasudevan, Madhavan
Mugundhan, Vivek
Velamati, Ratna Kishore
description This paper presents a study on the effect of solidity and airfoil profile on the performance of Vertical Axis Wind Turbines (VAWTs). A 1.1 kW commercially viable Darrieus VAWT was studied using ANSYS Fluent. Four different airfoils – NACA 0012, NACA 0015, NACA 0030 and AIR 001 – were considered in the analysis. The tip speed ratios (λ) were varied from 1 to 2.5 with an incoming wind velocity of 10 m/s. It was observed that NACA 0030 performed better at lower values of λ due to long duration of attached flow; while NACA 0012 performed better at λ > 1.8 with a wider range of λ. The shed vortex dissipates much faster for thinner airfoils than for thicker airfoils at higher values of λ. Two bladed VAWTs generated more power than the three bladed turbines. This indicated that turbines with lower solidity perform better at high λ. •3D simulations account for tip vortices and thus predicts more realistically.•Thicker airfoils perform better at lower TSR.•Thinner airfoils have wider range of operational TSR.•Higher solidity performs better at lower TSR.
doi_str_mv 10.1016/j.energy.2017.05.118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944230792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544217308757</els_id><sourcerecordid>1944230792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d21ea39fd99a6559aaff4e5e3a0949620c54ae2536ba95ccd736b5c5e312a31b3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYeA59akbdrmIsjqqrDgRc8hm0zWlLZZk3Z1fRqfxSczSz17mmH4_mHmQ-iSkpQSWl43KfTgN_s0I7RKCUsprY_QjNZVnpRVzY7RjOQlSVhRZKfoLISGEMJqzmfo694YUAN2BkvrjbMtlr3GwbVW22GPXY-3EOe-k72CAxY62bY4KNkC3oEfbOyw_LTh5_vDxugw-rXtAY_B9hs8vHkArG0HfbCuj-hieYc7p6E9RydGtgEu_uocvS7vXxaPyer54Wlxu0pUQciQ6IyCzLnRnMuSMS6lMQUwyCXhBS8zolghIWN5uZacKaWr2DEVAZrJnK7zObqa9m69ex8hDKJxo4-nBEF5NJKTimeRKiZKeReCByO23nbS7wUl4mBZNGKyLA6WBWEiWo6xmykG8YOdBS-CshBVaeujV6Gd_X_BL8PRimQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944230792</pqid></control><display><type>article</type><title>Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Subramanian, Abhishek ; Yogesh, S. Arun ; Sivanandan, Hrishikesh ; Giri, Abhijit ; Vasudevan, Madhavan ; Mugundhan, Vivek ; Velamati, Ratna Kishore</creator><creatorcontrib>Subramanian, Abhishek ; Yogesh, S. Arun ; Sivanandan, Hrishikesh ; Giri, Abhijit ; Vasudevan, Madhavan ; Mugundhan, Vivek ; Velamati, Ratna Kishore</creatorcontrib><description>This paper presents a study on the effect of solidity and airfoil profile on the performance of Vertical Axis Wind Turbines (VAWTs). A 1.1 kW commercially viable Darrieus VAWT was studied using ANSYS Fluent. Four different airfoils – NACA 0012, NACA 0015, NACA 0030 and AIR 001 – were considered in the analysis. The tip speed ratios (λ) were varied from 1 to 2.5 with an incoming wind velocity of 10 m/s. It was observed that NACA 0030 performed better at lower values of λ due to long duration of attached flow; while NACA 0012 performed better at λ &gt; 1.8 with a wider range of λ. The shed vortex dissipates much faster for thinner airfoils than for thicker airfoils at higher values of λ. Two bladed VAWTs generated more power than the three bladed turbines. This indicated that turbines with lower solidity perform better at high λ. •3D simulations account for tip vortices and thus predicts more realistically.•Thicker airfoils perform better at lower TSR.•Thinner airfoils have wider range of operational TSR.•Higher solidity performs better at lower TSR.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2017.05.118</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3-D technology ; Aerodynamics ; Airfoil ; Computational fluid dynamics ; Darrieus ; Impact analysis ; Mathematical models ; Solidity ; Three dimensional models ; Tip speed ; TSR ; Turbines ; VAWT ; Vertical axis wind turbines ; Wind power ; Wind speed ; Wind turbines</subject><ispartof>Energy (Oxford), 2017-08, Vol.133, p.179-190</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d21ea39fd99a6559aaff4e5e3a0949620c54ae2536ba95ccd736b5c5e312a31b3</citedby><cites>FETCH-LOGICAL-c400t-d21ea39fd99a6559aaff4e5e3a0949620c54ae2536ba95ccd736b5c5e312a31b3</cites><orcidid>0000-0002-9490-5454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2017.05.118$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Subramanian, Abhishek</creatorcontrib><creatorcontrib>Yogesh, S. Arun</creatorcontrib><creatorcontrib>Sivanandan, Hrishikesh</creatorcontrib><creatorcontrib>Giri, Abhijit</creatorcontrib><creatorcontrib>Vasudevan, Madhavan</creatorcontrib><creatorcontrib>Mugundhan, Vivek</creatorcontrib><creatorcontrib>Velamati, Ratna Kishore</creatorcontrib><title>Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model</title><title>Energy (Oxford)</title><description>This paper presents a study on the effect of solidity and airfoil profile on the performance of Vertical Axis Wind Turbines (VAWTs). A 1.1 kW commercially viable Darrieus VAWT was studied using ANSYS Fluent. Four different airfoils – NACA 0012, NACA 0015, NACA 0030 and AIR 001 – were considered in the analysis. The tip speed ratios (λ) were varied from 1 to 2.5 with an incoming wind velocity of 10 m/s. It was observed that NACA 0030 performed better at lower values of λ due to long duration of attached flow; while NACA 0012 performed better at λ &gt; 1.8 with a wider range of λ. The shed vortex dissipates much faster for thinner airfoils than for thicker airfoils at higher values of λ. Two bladed VAWTs generated more power than the three bladed turbines. This indicated that turbines with lower solidity perform better at high λ. •3D simulations account for tip vortices and thus predicts more realistically.•Thicker airfoils perform better at lower TSR.•Thinner airfoils have wider range of operational TSR.•Higher solidity performs better at lower TSR.</description><subject>3-D technology</subject><subject>Aerodynamics</subject><subject>Airfoil</subject><subject>Computational fluid dynamics</subject><subject>Darrieus</subject><subject>Impact analysis</subject><subject>Mathematical models</subject><subject>Solidity</subject><subject>Three dimensional models</subject><subject>Tip speed</subject><subject>TSR</subject><subject>Turbines</subject><subject>VAWT</subject><subject>Vertical axis wind turbines</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYeA59akbdrmIsjqqrDgRc8hm0zWlLZZk3Z1fRqfxSczSz17mmH4_mHmQ-iSkpQSWl43KfTgN_s0I7RKCUsprY_QjNZVnpRVzY7RjOQlSVhRZKfoLISGEMJqzmfo694YUAN2BkvrjbMtlr3GwbVW22GPXY-3EOe-k72CAxY62bY4KNkC3oEfbOyw_LTh5_vDxugw-rXtAY_B9hs8vHkArG0HfbCuj-hieYc7p6E9RydGtgEu_uocvS7vXxaPyer54Wlxu0pUQciQ6IyCzLnRnMuSMS6lMQUwyCXhBS8zolghIWN5uZacKaWr2DEVAZrJnK7zObqa9m69ex8hDKJxo4-nBEF5NJKTimeRKiZKeReCByO23nbS7wUl4mBZNGKyLA6WBWEiWo6xmykG8YOdBS-CshBVaeujV6Gd_X_BL8PRimQ</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Subramanian, Abhishek</creator><creator>Yogesh, S. Arun</creator><creator>Sivanandan, Hrishikesh</creator><creator>Giri, Abhijit</creator><creator>Vasudevan, Madhavan</creator><creator>Mugundhan, Vivek</creator><creator>Velamati, Ratna Kishore</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9490-5454</orcidid></search><sort><creationdate>20170815</creationdate><title>Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model</title><author>Subramanian, Abhishek ; Yogesh, S. Arun ; Sivanandan, Hrishikesh ; Giri, Abhijit ; Vasudevan, Madhavan ; Mugundhan, Vivek ; Velamati, Ratna Kishore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d21ea39fd99a6559aaff4e5e3a0949620c54ae2536ba95ccd736b5c5e312a31b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D technology</topic><topic>Aerodynamics</topic><topic>Airfoil</topic><topic>Computational fluid dynamics</topic><topic>Darrieus</topic><topic>Impact analysis</topic><topic>Mathematical models</topic><topic>Solidity</topic><topic>Three dimensional models</topic><topic>Tip speed</topic><topic>TSR</topic><topic>Turbines</topic><topic>VAWT</topic><topic>Vertical axis wind turbines</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Abhishek</creatorcontrib><creatorcontrib>Yogesh, S. Arun</creatorcontrib><creatorcontrib>Sivanandan, Hrishikesh</creatorcontrib><creatorcontrib>Giri, Abhijit</creatorcontrib><creatorcontrib>Vasudevan, Madhavan</creatorcontrib><creatorcontrib>Mugundhan, Vivek</creatorcontrib><creatorcontrib>Velamati, Ratna Kishore</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Abhishek</au><au>Yogesh, S. Arun</au><au>Sivanandan, Hrishikesh</au><au>Giri, Abhijit</au><au>Vasudevan, Madhavan</au><au>Mugundhan, Vivek</au><au>Velamati, Ratna Kishore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model</atitle><jtitle>Energy (Oxford)</jtitle><date>2017-08-15</date><risdate>2017</risdate><volume>133</volume><spage>179</spage><epage>190</epage><pages>179-190</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This paper presents a study on the effect of solidity and airfoil profile on the performance of Vertical Axis Wind Turbines (VAWTs). A 1.1 kW commercially viable Darrieus VAWT was studied using ANSYS Fluent. Four different airfoils – NACA 0012, NACA 0015, NACA 0030 and AIR 001 – were considered in the analysis. The tip speed ratios (λ) were varied from 1 to 2.5 with an incoming wind velocity of 10 m/s. It was observed that NACA 0030 performed better at lower values of λ due to long duration of attached flow; while NACA 0012 performed better at λ &gt; 1.8 with a wider range of λ. The shed vortex dissipates much faster for thinner airfoils than for thicker airfoils at higher values of λ. Two bladed VAWTs generated more power than the three bladed turbines. This indicated that turbines with lower solidity perform better at high λ. •3D simulations account for tip vortices and thus predicts more realistically.•Thicker airfoils perform better at lower TSR.•Thinner airfoils have wider range of operational TSR.•Higher solidity performs better at lower TSR.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2017.05.118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9490-5454</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2017-08, Vol.133, p.179-190
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_1944230792
source Access via ScienceDirect (Elsevier)
subjects 3-D technology
Aerodynamics
Airfoil
Computational fluid dynamics
Darrieus
Impact analysis
Mathematical models
Solidity
Three dimensional models
Tip speed
TSR
Turbines
VAWT
Vertical axis wind turbines
Wind power
Wind speed
Wind turbines
title Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20airfoil%20and%20solidity%20on%20performance%20of%20small%20scale%20vertical%20axis%C2%A0wind%20turbine%20using%20three%20dimensional%20CFD%20model&rft.jtitle=Energy%20(Oxford)&rft.au=Subramanian,%20Abhishek&rft.date=2017-08-15&rft.volume=133&rft.spage=179&rft.epage=190&rft.pages=179-190&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2017.05.118&rft_dat=%3Cproquest_cross%3E1944230792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944230792&rft_id=info:pmid/&rft_els_id=S0360544217308757&rfr_iscdi=true