Application of wavelet decomposition in time-series forecasting

Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters 2017-09, Vol.158, p.41-46
Hauptverfasser: Zhang, Keyi, Gençay, Ramazan, Ege Yazgan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 41
container_title Economics letters
container_volume 158
creator Zhang, Keyi
Gençay, Ramazan
Ege Yazgan, M.
description Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed. •Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.
doi_str_mv 10.1016/j.econlet.2017.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944226458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176517302379</els_id><sourcerecordid>1944226458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDj7nZxKKX5BwUvvy3YzkQ1tNu6mFf-9q-3d0xzmfZ9hHkLuKVQUqHrsK3Rh2OFUMaC6AlUBhQsyo7XmpeZaXJJZzsmSaiWvyU1KPQBljZYzsliO4847O_kwFKErvuwRM6loM3I_huT_Fn4oJr_HMmH0mIouRHQ2TX74uCVXnd0lvDvPOdk8P21Wr-X6_eVttVyXTgCbSi2UBFRaba3THJS0VFmNNTSNULXgzZbJllvUChgVvAMJuuXcua2rudZ8Th5O2DGGzwOmyfThEId80dBGCMaUkHVOyVPKxZBSxM6M0e9t_DYUzK8q05uzKvOryoAyWVXuLU49zB8cPUaTnMfBYevzo5Npg_-H8APSdHOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944226458</pqid></control><display><type>article</type><title>Application of wavelet decomposition in time-series forecasting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</creator><creatorcontrib>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</creatorcontrib><description>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed. •Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2017.06.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aggregate data ; Combining forecasts ; Economic forecasting ; Equality ; Forecasting ; Hierarchical time series ; Reconciling forecasts ; Time series ; Wavelet decomposition ; Wavelet transforms</subject><ispartof>Economics letters, 2017-09, Vol.158, p.41-46</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</citedby><cites>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.econlet.2017.06.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Keyi</creatorcontrib><creatorcontrib>Gençay, Ramazan</creatorcontrib><creatorcontrib>Ege Yazgan, M.</creatorcontrib><title>Application of wavelet decomposition in time-series forecasting</title><title>Economics letters</title><description>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed. •Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</description><subject>Aggregate data</subject><subject>Combining forecasts</subject><subject>Economic forecasting</subject><subject>Equality</subject><subject>Forecasting</subject><subject>Hierarchical time series</subject><subject>Reconciling forecasts</subject><subject>Time series</subject><subject>Wavelet decomposition</subject><subject>Wavelet transforms</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDj7nZxKKX5BwUvvy3YzkQ1tNu6mFf-9q-3d0xzmfZ9hHkLuKVQUqHrsK3Rh2OFUMaC6AlUBhQsyo7XmpeZaXJJZzsmSaiWvyU1KPQBljZYzsliO4847O_kwFKErvuwRM6loM3I_huT_Fn4oJr_HMmH0mIouRHQ2TX74uCVXnd0lvDvPOdk8P21Wr-X6_eVttVyXTgCbSi2UBFRaba3THJS0VFmNNTSNULXgzZbJllvUChgVvAMJuuXcua2rudZ8Th5O2DGGzwOmyfThEId80dBGCMaUkHVOyVPKxZBSxM6M0e9t_DYUzK8q05uzKvOryoAyWVXuLU49zB8cPUaTnMfBYevzo5Npg_-H8APSdHOw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhang, Keyi</creator><creator>Gençay, Ramazan</creator><creator>Ege Yazgan, M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170901</creationdate><title>Application of wavelet decomposition in time-series forecasting</title><author>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aggregate data</topic><topic>Combining forecasts</topic><topic>Economic forecasting</topic><topic>Equality</topic><topic>Forecasting</topic><topic>Hierarchical time series</topic><topic>Reconciling forecasts</topic><topic>Time series</topic><topic>Wavelet decomposition</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Keyi</creatorcontrib><creatorcontrib>Gençay, Ramazan</creatorcontrib><creatorcontrib>Ege Yazgan, M.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Keyi</au><au>Gençay, Ramazan</au><au>Ege Yazgan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of wavelet decomposition in time-series forecasting</atitle><jtitle>Economics letters</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>158</volume><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed. •Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2017.06.010</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2017-09, Vol.158, p.41-46
issn 0165-1765
1873-7374
language eng
recordid cdi_proquest_journals_1944226458
source Elsevier ScienceDirect Journals Complete
subjects Aggregate data
Combining forecasts
Economic forecasting
Equality
Forecasting
Hierarchical time series
Reconciling forecasts
Time series
Wavelet decomposition
Wavelet transforms
title Application of wavelet decomposition in time-series forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20wavelet%20decomposition%20in%20time-series%20forecasting&rft.jtitle=Economics%20letters&rft.au=Zhang,%20Keyi&rft.date=2017-09-01&rft.volume=158&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2017.06.010&rft_dat=%3Cproquest_cross%3E1944226458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944226458&rft_id=info:pmid/&rft_els_id=S0165176517302379&rfr_iscdi=true