Application of wavelet decomposition in time-series forecasting
Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a...
Gespeichert in:
Veröffentlicht in: | Economics letters 2017-09, Vol.158, p.41-46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | |
container_start_page | 41 |
container_title | Economics letters |
container_volume | 158 |
creator | Zhang, Keyi Gençay, Ramazan Ege Yazgan, M. |
description | Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed.
•Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data. |
doi_str_mv | 10.1016/j.econlet.2017.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1944226458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176517302379</els_id><sourcerecordid>1944226458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDj7nZxKKX5BwUvvy3YzkQ1tNu6mFf-9q-3d0xzmfZ9hHkLuKVQUqHrsK3Rh2OFUMaC6AlUBhQsyo7XmpeZaXJJZzsmSaiWvyU1KPQBljZYzsliO4847O_kwFKErvuwRM6loM3I_huT_Fn4oJr_HMmH0mIouRHQ2TX74uCVXnd0lvDvPOdk8P21Wr-X6_eVttVyXTgCbSi2UBFRaba3THJS0VFmNNTSNULXgzZbJllvUChgVvAMJuuXcua2rudZ8Th5O2DGGzwOmyfThEId80dBGCMaUkHVOyVPKxZBSxM6M0e9t_DYUzK8q05uzKvOryoAyWVXuLU49zB8cPUaTnMfBYevzo5Npg_-H8APSdHOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944226458</pqid></control><display><type>article</type><title>Application of wavelet decomposition in time-series forecasting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</creator><creatorcontrib>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</creatorcontrib><description>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed.
•Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2017.06.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aggregate data ; Combining forecasts ; Economic forecasting ; Equality ; Forecasting ; Hierarchical time series ; Reconciling forecasts ; Time series ; Wavelet decomposition ; Wavelet transforms</subject><ispartof>Economics letters, 2017-09, Vol.158, p.41-46</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</citedby><cites>FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.econlet.2017.06.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Keyi</creatorcontrib><creatorcontrib>Gençay, Ramazan</creatorcontrib><creatorcontrib>Ege Yazgan, M.</creatorcontrib><title>Application of wavelet decomposition in time-series forecasting</title><title>Economics letters</title><description>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed.
•Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</description><subject>Aggregate data</subject><subject>Combining forecasts</subject><subject>Economic forecasting</subject><subject>Equality</subject><subject>Forecasting</subject><subject>Hierarchical time series</subject><subject>Reconciling forecasts</subject><subject>Time series</subject><subject>Wavelet decomposition</subject><subject>Wavelet transforms</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_ghDwnDj7nZxKKX5BwUvvy3YzkQ1tNu6mFf-9q-3d0xzmfZ9hHkLuKVQUqHrsK3Rh2OFUMaC6AlUBhQsyo7XmpeZaXJJZzsmSaiWvyU1KPQBljZYzsliO4847O_kwFKErvuwRM6loM3I_huT_Fn4oJr_HMmH0mIouRHQ2TX74uCVXnd0lvDvPOdk8P21Wr-X6_eVttVyXTgCbSi2UBFRaba3THJS0VFmNNTSNULXgzZbJllvUChgVvAMJuuXcua2rudZ8Th5O2DGGzwOmyfThEId80dBGCMaUkHVOyVPKxZBSxM6M0e9t_DYUzK8q05uzKvOryoAyWVXuLU49zB8cPUaTnMfBYevzo5Npg_-H8APSdHOw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhang, Keyi</creator><creator>Gençay, Ramazan</creator><creator>Ege Yazgan, M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170901</creationdate><title>Application of wavelet decomposition in time-series forecasting</title><author>Zhang, Keyi ; Gençay, Ramazan ; Ege Yazgan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-74650e676bac73065a16a7e8099468439b25d3ae7602143f0507d33ccbc83773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aggregate data</topic><topic>Combining forecasts</topic><topic>Economic forecasting</topic><topic>Equality</topic><topic>Forecasting</topic><topic>Hierarchical time series</topic><topic>Reconciling forecasts</topic><topic>Time series</topic><topic>Wavelet decomposition</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Keyi</creatorcontrib><creatorcontrib>Gençay, Ramazan</creatorcontrib><creatorcontrib>Ege Yazgan, M.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Keyi</au><au>Gençay, Ramazan</au><au>Ege Yazgan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of wavelet decomposition in time-series forecasting</atitle><jtitle>Economics letters</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>158</volume><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>Observed time series data can exhibit different components, such as trends, seasonality, and jumps, which are characterized by different coefficients in their respective data generating processes. Therefore, fitting a given time series model to aggregated data can be time consuming and may lead to a loss of forecasting accuracy. In this paper, coefficients for variable components in estimations are generated based on wavelet-based multiresolution analyses. Thus, the accuracy of forecasts based on aggregate data should be improved because the constraint of equality among the model coefficients for all data components is relaxed.
•Wavelet-based multiresolution decomposes a time series into a set of constitutive series with an explicitly defined hierarchical structure.•We show that this decomposition method can improve the accuracy of forecasts of original times series data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2017.06.010</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1765 |
ispartof | Economics letters, 2017-09, Vol.158, p.41-46 |
issn | 0165-1765 1873-7374 |
language | eng |
recordid | cdi_proquest_journals_1944226458 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aggregate data Combining forecasts Economic forecasting Equality Forecasting Hierarchical time series Reconciling forecasts Time series Wavelet decomposition Wavelet transforms |
title | Application of wavelet decomposition in time-series forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20wavelet%20decomposition%20in%20time-series%20forecasting&rft.jtitle=Economics%20letters&rft.au=Zhang,%20Keyi&rft.date=2017-09-01&rft.volume=158&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2017.06.010&rft_dat=%3Cproquest_cross%3E1944226458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944226458&rft_id=info:pmid/&rft_els_id=S0165176517302379&rfr_iscdi=true |