Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2
The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be ac...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2013-02, Vol.67 (4), p.854-862 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 4 |
container_start_page | 854 |
container_title | Water science and technology |
container_volume | 67 |
creator | Nielsen, U. Hastrup, C. Klausen, M. M. Pedersen, B. M. Kristensen, G. H. Jansen, J. L. C. Bak, S. N. Tuerk, J. |
description | The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water. |
doi_str_mv | 10.2166/wst.2012.645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943880913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943880913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKd3_oADXrrOfLRJczmLusGkY-idENI2wY1uqUnr2L83Y14czsV5OC_vg9A9wVNKOH86hH5KMaFTnmYXaESk5IkUjF6iEaaCJYRSdo1uQthijAVL8Qh9rc3O_eoWnIXZahFA7xuodN0bv9FgvdvBtwvdpo_IQYfeHHQ8QXWE9-c1dO0QoGSTOPAIc1rSCaxmBTgPRVvSW3RldRvM3f8eo8_Xl49inizLt0UxWyY1JTRLKp5nDSNpw7HM0rzBOOOyjoUstSLnVmpRNSLVUpLaNoTR2jDTkFTXVnLBNRujh_PfzrufwYRebd3g9zFSEZmyPMeSsEhNzlTtXQjeWNX5zU77oyJYnfyp6E-d_Knoj_0B5R9fBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943880913</pqid></control><display><type>article</type><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</creator><creatorcontrib>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</creatorcontrib><description>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2012.645</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Activated carbon ; Antibiotics ; Bacteria ; Bioreactors ; Chlorine ; Chlorine dioxide ; Contrast media ; Dilution ; E coli ; Emission measurements ; Hospital wastes ; Hydrogen peroxide ; Marine environment ; Medical wastes ; Operating costs ; Ozone ; Treated water ; Wastewater treatment</subject><ispartof>Water science and technology, 2013-02, Vol.67 (4), p.854-862</ispartof><rights>Copyright IWA Publishing Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Nielsen, U.</creatorcontrib><creatorcontrib>Hastrup, C.</creatorcontrib><creatorcontrib>Klausen, M. M.</creatorcontrib><creatorcontrib>Pedersen, B. M.</creatorcontrib><creatorcontrib>Kristensen, G. H.</creatorcontrib><creatorcontrib>Jansen, J. L. C.</creatorcontrib><creatorcontrib>Bak, S. N.</creatorcontrib><creatorcontrib>Tuerk, J.</creatorcontrib><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><title>Water science and technology</title><description>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</description><subject>Activated carbon</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bioreactors</subject><subject>Chlorine</subject><subject>Chlorine dioxide</subject><subject>Contrast media</subject><subject>Dilution</subject><subject>E coli</subject><subject>Emission measurements</subject><subject>Hospital wastes</subject><subject>Hydrogen peroxide</subject><subject>Marine environment</subject><subject>Medical wastes</subject><subject>Operating costs</subject><subject>Ozone</subject><subject>Treated water</subject><subject>Wastewater treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkF1LwzAUhoMoOKd3_oADXrrOfLRJczmLusGkY-idENI2wY1uqUnr2L83Y14czsV5OC_vg9A9wVNKOH86hH5KMaFTnmYXaESk5IkUjF6iEaaCJYRSdo1uQthijAVL8Qh9rc3O_eoWnIXZahFA7xuodN0bv9FgvdvBtwvdpo_IQYfeHHQ8QXWE9-c1dO0QoGSTOPAIc1rSCaxmBTgPRVvSW3RldRvM3f8eo8_Xl49inizLt0UxWyY1JTRLKp5nDSNpw7HM0rzBOOOyjoUstSLnVmpRNSLVUpLaNoTR2jDTkFTXVnLBNRujh_PfzrufwYRebd3g9zFSEZmyPMeSsEhNzlTtXQjeWNX5zU77oyJYnfyp6E-d_Knoj_0B5R9fBg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Nielsen, U.</creator><creator>Hastrup, C.</creator><creator>Klausen, M. M.</creator><creator>Pedersen, B. M.</creator><creator>Kristensen, G. H.</creator><creator>Jansen, J. L. C.</creator><creator>Bak, S. N.</creator><creator>Tuerk, J.</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20130201</creationdate><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><author>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activated carbon</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bioreactors</topic><topic>Chlorine</topic><topic>Chlorine dioxide</topic><topic>Contrast media</topic><topic>Dilution</topic><topic>E coli</topic><topic>Emission measurements</topic><topic>Hospital wastes</topic><topic>Hydrogen peroxide</topic><topic>Marine environment</topic><topic>Medical wastes</topic><topic>Operating costs</topic><topic>Ozone</topic><topic>Treated water</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, U.</creatorcontrib><creatorcontrib>Hastrup, C.</creatorcontrib><creatorcontrib>Klausen, M. M.</creatorcontrib><creatorcontrib>Pedersen, B. M.</creatorcontrib><creatorcontrib>Kristensen, G. H.</creatorcontrib><creatorcontrib>Jansen, J. L. C.</creatorcontrib><creatorcontrib>Bak, S. N.</creatorcontrib><creatorcontrib>Tuerk, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, U.</au><au>Hastrup, C.</au><au>Klausen, M. M.</au><au>Pedersen, B. M.</au><au>Kristensen, G. H.</au><au>Jansen, J. L. C.</au><au>Bak, S. N.</au><au>Tuerk, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</atitle><jtitle>Water science and technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>67</volume><issue>4</issue><spage>854</spage><epage>862</epage><pages>854-862</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/wst.2012.645</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2013-02, Vol.67 (4), p.854-862 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_journals_1943880913 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Activated carbon Antibiotics Bacteria Bioreactors Chlorine Chlorine dioxide Contrast media Dilution E coli Emission measurements Hospital wastes Hydrogen peroxide Marine environment Medical wastes Operating costs Ozone Treated water Wastewater treatment |
title | Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20APIs%20and%20bacteria%20from%20hospital%20wastewater%20by%20MBR%20plus%20O3,%20O3%20+%20H2O2,%20PAC%20or%20ClO2&rft.jtitle=Water%20science%20and%20technology&rft.au=Nielsen,%20U.&rft.date=2013-02-01&rft.volume=67&rft.issue=4&rft.spage=854&rft.epage=862&rft.pages=854-862&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2012.645&rft_dat=%3Cproquest_cross%3E1943880913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943880913&rft_id=info:pmid/&rfr_iscdi=true |