Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2

The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2013-02, Vol.67 (4), p.854-862
Hauptverfasser: Nielsen, U., Hastrup, C., Klausen, M. M., Pedersen, B. M., Kristensen, G. H., Jansen, J. L. C., Bak, S. N., Tuerk, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 862
container_issue 4
container_start_page 854
container_title Water science and technology
container_volume 67
creator Nielsen, U.
Hastrup, C.
Klausen, M. M.
Pedersen, B. M.
Kristensen, G. H.
Jansen, J. L. C.
Bak, S. N.
Tuerk, J.
description The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.
doi_str_mv 10.2166/wst.2012.645
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943880913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943880913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKd3_oADXrrOfLRJczmLusGkY-idENI2wY1uqUnr2L83Y14czsV5OC_vg9A9wVNKOH86hH5KMaFTnmYXaESk5IkUjF6iEaaCJYRSdo1uQthijAVL8Qh9rc3O_eoWnIXZahFA7xuodN0bv9FgvdvBtwvdpo_IQYfeHHQ8QXWE9-c1dO0QoGSTOPAIc1rSCaxmBTgPRVvSW3RldRvM3f8eo8_Xl49inizLt0UxWyY1JTRLKp5nDSNpw7HM0rzBOOOyjoUstSLnVmpRNSLVUpLaNoTR2jDTkFTXVnLBNRujh_PfzrufwYRebd3g9zFSEZmyPMeSsEhNzlTtXQjeWNX5zU77oyJYnfyp6E-d_Knoj_0B5R9fBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943880913</pqid></control><display><type>article</type><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</creator><creatorcontrib>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</creatorcontrib><description>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2012.645</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Activated carbon ; Antibiotics ; Bacteria ; Bioreactors ; Chlorine ; Chlorine dioxide ; Contrast media ; Dilution ; E coli ; Emission measurements ; Hospital wastes ; Hydrogen peroxide ; Marine environment ; Medical wastes ; Operating costs ; Ozone ; Treated water ; Wastewater treatment</subject><ispartof>Water science and technology, 2013-02, Vol.67 (4), p.854-862</ispartof><rights>Copyright IWA Publishing Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Nielsen, U.</creatorcontrib><creatorcontrib>Hastrup, C.</creatorcontrib><creatorcontrib>Klausen, M. M.</creatorcontrib><creatorcontrib>Pedersen, B. M.</creatorcontrib><creatorcontrib>Kristensen, G. H.</creatorcontrib><creatorcontrib>Jansen, J. L. C.</creatorcontrib><creatorcontrib>Bak, S. N.</creatorcontrib><creatorcontrib>Tuerk, J.</creatorcontrib><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><title>Water science and technology</title><description>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</description><subject>Activated carbon</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bioreactors</subject><subject>Chlorine</subject><subject>Chlorine dioxide</subject><subject>Contrast media</subject><subject>Dilution</subject><subject>E coli</subject><subject>Emission measurements</subject><subject>Hospital wastes</subject><subject>Hydrogen peroxide</subject><subject>Marine environment</subject><subject>Medical wastes</subject><subject>Operating costs</subject><subject>Ozone</subject><subject>Treated water</subject><subject>Wastewater treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkF1LwzAUhoMoOKd3_oADXrrOfLRJczmLusGkY-idENI2wY1uqUnr2L83Y14czsV5OC_vg9A9wVNKOH86hH5KMaFTnmYXaESk5IkUjF6iEaaCJYRSdo1uQthijAVL8Qh9rc3O_eoWnIXZahFA7xuodN0bv9FgvdvBtwvdpo_IQYfeHHQ8QXWE9-c1dO0QoGSTOPAIc1rSCaxmBTgPRVvSW3RldRvM3f8eo8_Xl49inizLt0UxWyY1JTRLKp5nDSNpw7HM0rzBOOOyjoUstSLnVmpRNSLVUpLaNoTR2jDTkFTXVnLBNRujh_PfzrufwYRebd3g9zFSEZmyPMeSsEhNzlTtXQjeWNX5zU77oyJYnfyp6E-d_Knoj_0B5R9fBg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Nielsen, U.</creator><creator>Hastrup, C.</creator><creator>Klausen, M. M.</creator><creator>Pedersen, B. M.</creator><creator>Kristensen, G. H.</creator><creator>Jansen, J. L. C.</creator><creator>Bak, S. N.</creator><creator>Tuerk, J.</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20130201</creationdate><title>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</title><author>Nielsen, U. ; Hastrup, C. ; Klausen, M. M. ; Pedersen, B. M. ; Kristensen, G. H. ; Jansen, J. L. C. ; Bak, S. N. ; Tuerk, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2125-b685d314d609548d00569c166f2f786f9a7bd74a991cfd132ce3ed14acf9676a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activated carbon</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bioreactors</topic><topic>Chlorine</topic><topic>Chlorine dioxide</topic><topic>Contrast media</topic><topic>Dilution</topic><topic>E coli</topic><topic>Emission measurements</topic><topic>Hospital wastes</topic><topic>Hydrogen peroxide</topic><topic>Marine environment</topic><topic>Medical wastes</topic><topic>Operating costs</topic><topic>Ozone</topic><topic>Treated water</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, U.</creatorcontrib><creatorcontrib>Hastrup, C.</creatorcontrib><creatorcontrib>Klausen, M. M.</creatorcontrib><creatorcontrib>Pedersen, B. M.</creatorcontrib><creatorcontrib>Kristensen, G. H.</creatorcontrib><creatorcontrib>Jansen, J. L. C.</creatorcontrib><creatorcontrib>Bak, S. N.</creatorcontrib><creatorcontrib>Tuerk, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, U.</au><au>Hastrup, C.</au><au>Klausen, M. M.</au><au>Pedersen, B. M.</au><au>Kristensen, G. H.</au><au>Jansen, J. L. C.</au><au>Bak, S. N.</au><au>Tuerk, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2</atitle><jtitle>Water science and technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>67</volume><issue>4</issue><spage>854</spage><epage>862</epage><pages>854-862</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/wst.2012.645</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2013-02, Vol.67 (4), p.854-862
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_journals_1943880913
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Activated carbon
Antibiotics
Bacteria
Bioreactors
Chlorine
Chlorine dioxide
Contrast media
Dilution
E coli
Emission measurements
Hospital wastes
Hydrogen peroxide
Marine environment
Medical wastes
Operating costs
Ozone
Treated water
Wastewater treatment
title Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20APIs%20and%20bacteria%20from%20hospital%20wastewater%20by%20MBR%20plus%20O3,%20O3%20+%20H2O2,%20PAC%20or%20ClO2&rft.jtitle=Water%20science%20and%20technology&rft.au=Nielsen,%20U.&rft.date=2013-02-01&rft.volume=67&rft.issue=4&rft.spage=854&rft.epage=862&rft.pages=854-862&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2012.645&rft_dat=%3Cproquest_cross%3E1943880913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943880913&rft_id=info:pmid/&rfr_iscdi=true