Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity

•First report on the synthesis of AgNPs using leafy green extract of Belgian endive.•Biosynthesized AgNPs were characterized with UV–vis, TEM, XRD, and SERS.•Biosynthesized AgNPs showed antibacterial effect at picomolar concentration levels. [Display omitted] We report for the first time a green, si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2017-06, Vol.197, p.98-101
Hauptverfasser: Gallucci, M. Nicolás, Fraire, Juan C., Ferreyra Maillard, Anike P.V., Páez, Paulina L., Aiassa Martínez, Ivana M., Pannunzio Miner, Elisa V., Coronado, Eduardo A., Dalmasso, Pablo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue
container_start_page 98
container_title Materials letters
container_volume 197
creator Gallucci, M. Nicolás
Fraire, Juan C.
Ferreyra Maillard, Anike P.V.
Páez, Paulina L.
Aiassa Martínez, Ivana M.
Pannunzio Miner, Elisa V.
Coronado, Eduardo A.
Dalmasso, Pablo R.
description •First report on the synthesis of AgNPs using leafy green extract of Belgian endive.•Biosynthesized AgNPs were characterized with UV–vis, TEM, XRD, and SERS.•Biosynthesized AgNPs showed antibacterial effect at picomolar concentration levels. [Display omitted] We report for the first time a green, simple, and low-cost synthesis of silver nanoparticles (AgNPs) by mixing AgNO3 solution with the aqueous leaf extract of Belgian endive, a variety of Cichorium intybus L., without any harmful reducing and capping agents. The biosynthesis of AgNPs was observed by the color charge from colorless (metal salt solution) to a yellowish brown (nanoparticle colloidal dispersion), which was confirmed by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). UV–vis spectra showed the surface plasmon resonance signature of AgNPs around 420nm, TEM revealed that nanoparticles were quasi-spherical with an average diameter ranging from 19 to 64nm depending on the metal salt concentration, and XRD pattern indicated that the biosynthetic process produced face-centered cubic AgNPs. Surface-enhanced Raman spectroscopy analysis showed that the AgNPs were capped with bioactive molecules from the leaf extract, which are also believed to be responsible for the bio-reduction of silver ions. The antibacterial activity of the biosynthesized AgNPs was studied using both the disk diffusion and minimum inhibitory concentration methods against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and they were found to be effective at picomolar concentration levels.
doi_str_mv 10.1016/j.matlet.2017.03.141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943623339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X17304822</els_id><sourcerecordid>1943623339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-38f7406ad78cfc2345f3e8575b167936da351a33729edded11e963af375974c33</originalsourceid><addsrcrecordid>eNp9UU2LFDEUbETBcfUfeAh4UdjuTSbpzrQHwR38WBjYwyp4C5nkZecNPcmYpBvbP-NfNUN79vB4j6KqHkVV1WtGG0ZZd3NsTjoPkJs1ZbKhvGGCPalWbCN5LXrZP61WhSbrVsofz6sXKR0ppaKnYlX9ecBhgki89uGsY0YzQCIuhhMZQLuZPEYAT-BXjtpkEhy5heERdYG8xQnI2y2aQ4g4ngj6PO_HRHYNmXRsSNIZpzG9e09uMaTZ5wMkTNfEHPTFDCL-Lozgr4n2tkzG_QLrgZQDJ8zzy-qZ00OCV__2VfX986dv26_17v7L3fbjrjaci1zzjZOCdtrKjXFmzUXrOGxa2e5L7p53VvOWac7lugdrwTIGfce147LtpSgeV9Wbxfccw88RUlbHMEZfXirWC96tOed9YYmFZWJIKYJT54gnHWfFqLpUoY5qqUJdqlCUq1JFkX1YZFASTAhRJYPgDViMYLKyAf9v8BeM15cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943623339</pqid></control><display><type>article</type><title>Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity</title><source>Elsevier ScienceDirect Journals</source><creator>Gallucci, M. Nicolás ; Fraire, Juan C. ; Ferreyra Maillard, Anike P.V. ; Páez, Paulina L. ; Aiassa Martínez, Ivana M. ; Pannunzio Miner, Elisa V. ; Coronado, Eduardo A. ; Dalmasso, Pablo R.</creator><creatorcontrib>Gallucci, M. Nicolás ; Fraire, Juan C. ; Ferreyra Maillard, Anike P.V. ; Páez, Paulina L. ; Aiassa Martínez, Ivana M. ; Pannunzio Miner, Elisa V. ; Coronado, Eduardo A. ; Dalmasso, Pablo R.</creatorcontrib><description>•First report on the synthesis of AgNPs using leafy green extract of Belgian endive.•Biosynthesized AgNPs were characterized with UV–vis, TEM, XRD, and SERS.•Biosynthesized AgNPs showed antibacterial effect at picomolar concentration levels. [Display omitted] We report for the first time a green, simple, and low-cost synthesis of silver nanoparticles (AgNPs) by mixing AgNO3 solution with the aqueous leaf extract of Belgian endive, a variety of Cichorium intybus L., without any harmful reducing and capping agents. The biosynthesis of AgNPs was observed by the color charge from colorless (metal salt solution) to a yellowish brown (nanoparticle colloidal dispersion), which was confirmed by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). UV–vis spectra showed the surface plasmon resonance signature of AgNPs around 420nm, TEM revealed that nanoparticles were quasi-spherical with an average diameter ranging from 19 to 64nm depending on the metal salt concentration, and XRD pattern indicated that the biosynthetic process produced face-centered cubic AgNPs. Surface-enhanced Raman spectroscopy analysis showed that the AgNPs were capped with bioactive molecules from the leaf extract, which are also believed to be responsible for the bio-reduction of silver ions. The antibacterial activity of the biosynthesized AgNPs was studied using both the disk diffusion and minimum inhibitory concentration methods against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and they were found to be effective at picomolar concentration levels.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2017.03.141</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antibacterial activity ; Belgian endive ; Biocompatibility ; Biomaterials ; Biomedical materials ; Biosynthesis ; Capping ; E coli ; Electron microscopy ; Materials science ; Nanocrystalline materials ; Nanocrystals ; Nanoparticles ; Physicochemical analysis ; Pseudomonas aeruginosa ; Raman spectroscopy ; Silver ; Silver nanoparticles ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Materials letters, 2017-06, Vol.197, p.98-101</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-38f7406ad78cfc2345f3e8575b167936da351a33729edded11e963af375974c33</citedby><cites>FETCH-LOGICAL-c334t-38f7406ad78cfc2345f3e8575b167936da351a33729edded11e963af375974c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2017.03.141$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Gallucci, M. Nicolás</creatorcontrib><creatorcontrib>Fraire, Juan C.</creatorcontrib><creatorcontrib>Ferreyra Maillard, Anike P.V.</creatorcontrib><creatorcontrib>Páez, Paulina L.</creatorcontrib><creatorcontrib>Aiassa Martínez, Ivana M.</creatorcontrib><creatorcontrib>Pannunzio Miner, Elisa V.</creatorcontrib><creatorcontrib>Coronado, Eduardo A.</creatorcontrib><creatorcontrib>Dalmasso, Pablo R.</creatorcontrib><title>Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity</title><title>Materials letters</title><description>•First report on the synthesis of AgNPs using leafy green extract of Belgian endive.•Biosynthesized AgNPs were characterized with UV–vis, TEM, XRD, and SERS.•Biosynthesized AgNPs showed antibacterial effect at picomolar concentration levels. [Display omitted] We report for the first time a green, simple, and low-cost synthesis of silver nanoparticles (AgNPs) by mixing AgNO3 solution with the aqueous leaf extract of Belgian endive, a variety of Cichorium intybus L., without any harmful reducing and capping agents. The biosynthesis of AgNPs was observed by the color charge from colorless (metal salt solution) to a yellowish brown (nanoparticle colloidal dispersion), which was confirmed by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). UV–vis spectra showed the surface plasmon resonance signature of AgNPs around 420nm, TEM revealed that nanoparticles were quasi-spherical with an average diameter ranging from 19 to 64nm depending on the metal salt concentration, and XRD pattern indicated that the biosynthetic process produced face-centered cubic AgNPs. Surface-enhanced Raman spectroscopy analysis showed that the AgNPs were capped with bioactive molecules from the leaf extract, which are also believed to be responsible for the bio-reduction of silver ions. The antibacterial activity of the biosynthesized AgNPs was studied using both the disk diffusion and minimum inhibitory concentration methods against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and they were found to be effective at picomolar concentration levels.</description><subject>Antibacterial activity</subject><subject>Belgian endive</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biosynthesis</subject><subject>Capping</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Physicochemical analysis</subject><subject>Pseudomonas aeruginosa</subject><subject>Raman spectroscopy</subject><subject>Silver</subject><subject>Silver nanoparticles</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UU2LFDEUbETBcfUfeAh4UdjuTSbpzrQHwR38WBjYwyp4C5nkZecNPcmYpBvbP-NfNUN79vB4j6KqHkVV1WtGG0ZZd3NsTjoPkJs1ZbKhvGGCPalWbCN5LXrZP61WhSbrVsofz6sXKR0ppaKnYlX9ecBhgki89uGsY0YzQCIuhhMZQLuZPEYAT-BXjtpkEhy5heERdYG8xQnI2y2aQ4g4ngj6PO_HRHYNmXRsSNIZpzG9e09uMaTZ5wMkTNfEHPTFDCL-Lozgr4n2tkzG_QLrgZQDJ8zzy-qZ00OCV__2VfX986dv26_17v7L3fbjrjaci1zzjZOCdtrKjXFmzUXrOGxa2e5L7p53VvOWac7lugdrwTIGfce147LtpSgeV9Wbxfccw88RUlbHMEZfXirWC96tOed9YYmFZWJIKYJT54gnHWfFqLpUoY5qqUJdqlCUq1JFkX1YZFASTAhRJYPgDViMYLKyAf9v8BeM15cA</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Gallucci, M. Nicolás</creator><creator>Fraire, Juan C.</creator><creator>Ferreyra Maillard, Anike P.V.</creator><creator>Páez, Paulina L.</creator><creator>Aiassa Martínez, Ivana M.</creator><creator>Pannunzio Miner, Elisa V.</creator><creator>Coronado, Eduardo A.</creator><creator>Dalmasso, Pablo R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170615</creationdate><title>Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity</title><author>Gallucci, M. Nicolás ; Fraire, Juan C. ; Ferreyra Maillard, Anike P.V. ; Páez, Paulina L. ; Aiassa Martínez, Ivana M. ; Pannunzio Miner, Elisa V. ; Coronado, Eduardo A. ; Dalmasso, Pablo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-38f7406ad78cfc2345f3e8575b167936da351a33729edded11e963af375974c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antibacterial activity</topic><topic>Belgian endive</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biosynthesis</topic><topic>Capping</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Physicochemical analysis</topic><topic>Pseudomonas aeruginosa</topic><topic>Raman spectroscopy</topic><topic>Silver</topic><topic>Silver nanoparticles</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallucci, M. Nicolás</creatorcontrib><creatorcontrib>Fraire, Juan C.</creatorcontrib><creatorcontrib>Ferreyra Maillard, Anike P.V.</creatorcontrib><creatorcontrib>Páez, Paulina L.</creatorcontrib><creatorcontrib>Aiassa Martínez, Ivana M.</creatorcontrib><creatorcontrib>Pannunzio Miner, Elisa V.</creatorcontrib><creatorcontrib>Coronado, Eduardo A.</creatorcontrib><creatorcontrib>Dalmasso, Pablo R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallucci, M. Nicolás</au><au>Fraire, Juan C.</au><au>Ferreyra Maillard, Anike P.V.</au><au>Páez, Paulina L.</au><au>Aiassa Martínez, Ivana M.</au><au>Pannunzio Miner, Elisa V.</au><au>Coronado, Eduardo A.</au><au>Dalmasso, Pablo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity</atitle><jtitle>Materials letters</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>197</volume><spage>98</spage><epage>101</epage><pages>98-101</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•First report on the synthesis of AgNPs using leafy green extract of Belgian endive.•Biosynthesized AgNPs were characterized with UV–vis, TEM, XRD, and SERS.•Biosynthesized AgNPs showed antibacterial effect at picomolar concentration levels. [Display omitted] We report for the first time a green, simple, and low-cost synthesis of silver nanoparticles (AgNPs) by mixing AgNO3 solution with the aqueous leaf extract of Belgian endive, a variety of Cichorium intybus L., without any harmful reducing and capping agents. The biosynthesis of AgNPs was observed by the color charge from colorless (metal salt solution) to a yellowish brown (nanoparticle colloidal dispersion), which was confirmed by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). UV–vis spectra showed the surface plasmon resonance signature of AgNPs around 420nm, TEM revealed that nanoparticles were quasi-spherical with an average diameter ranging from 19 to 64nm depending on the metal salt concentration, and XRD pattern indicated that the biosynthetic process produced face-centered cubic AgNPs. Surface-enhanced Raman spectroscopy analysis showed that the AgNPs were capped with bioactive molecules from the leaf extract, which are also believed to be responsible for the bio-reduction of silver ions. The antibacterial activity of the biosynthesized AgNPs was studied using both the disk diffusion and minimum inhibitory concentration methods against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and they were found to be effective at picomolar concentration levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2017.03.141</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2017-06, Vol.197, p.98-101
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_1943623339
source Elsevier ScienceDirect Journals
subjects Antibacterial activity
Belgian endive
Biocompatibility
Biomaterials
Biomedical materials
Biosynthesis
Capping
E coli
Electron microscopy
Materials science
Nanocrystalline materials
Nanocrystals
Nanoparticles
Physicochemical analysis
Pseudomonas aeruginosa
Raman spectroscopy
Silver
Silver nanoparticles
Transmission electron microscopy
X-ray diffraction
title Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20nanoparticles%20from%20leafy%20green%20extract%20of%20Belgian%20endive%20(Cichorium%20intybus%20L.%20var.%20sativus):%20Biosynthesis,%20characterization,%20and%20antibacterial%20activity&rft.jtitle=Materials%20letters&rft.au=Gallucci,%20M.%20Nicol%C3%A1s&rft.date=2017-06-15&rft.volume=197&rft.spage=98&rft.epage=101&rft.pages=98-101&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2017.03.141&rft_dat=%3Cproquest_cross%3E1943623339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943623339&rft_id=info:pmid/&rft_els_id=S0167577X17304822&rfr_iscdi=true