Transition of creep mechanism by solute hydrogen in Zircaloy-4
The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the fol...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | |
container_start_page | 191 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 684 |
creator | Matsunaga, Tetsuya Hongo, Hiromichi Tabuchi, Masaaki Satoh, Yuhki Abe, Hiroaki |
description | The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate. |
doi_str_mv | 10.1016/j.msea.2016.12.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943253973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316315465</els_id><sourcerecordid>1943253973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz61J06QJiCCLX7DgZb14CWk6cVO2zZp0hf57s6xnTzOH93lneBC6oaSkhIq7vhwSmLLKe0mrkvDmBC2obFhRKyZO0YKoihacKHaOLlLqCSG0JnyBHtbRjMlPPow4OGwjwA4PYDdm9GnA7YxT2O4nwJu5i-ELRuxH_OmjNdswF_UVOnNmm-D6b16ij-en9fK1WL2_vC0fV4Vlqp4K0UkuFGeUmUoIDkSA7JQwTnAqOTO8tZ1oiaOS5aizRHaGuqaRxBrpeMsu0e2xdxfD9x7SpPuwj2M-qamqWcWZalhOVceUjSGlCE7voh9MnDUl-uBJ9_rgSR88aVrp7ClD90cI8v8_HqJO1sNoofMR7KS74P_DfwHg-XAf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943253973</pqid></control><display><type>article</type><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><source>Elsevier ScienceDirect Journals</source><creator>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</creator><creatorcontrib>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</creatorcontrib><description>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.12.057</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Creep ; Creep rate ; Creep tests ; Cross slip ; Dislocation network ; Dislocations ; Electric power plants ; Electron microscopy ; Hydrogen ; Hydrogen storage ; Nuclear electric power generation ; Nuclear engineering ; Nuclear power plants ; Nuclear safety ; Solute hydrogen ; Straight dislocation ; Transmission electron microscopy ; Zircaloy-4 ; Zircaloys (trademark) ; Zirconium alloys</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 27, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</citedby><cites>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.12.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Matsunaga, Tetsuya</creatorcontrib><creatorcontrib>Hongo, Hiromichi</creatorcontrib><creatorcontrib>Tabuchi, Masaaki</creatorcontrib><creatorcontrib>Satoh, Yuhki</creatorcontrib><creatorcontrib>Abe, Hiroaki</creatorcontrib><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</description><subject>Creep</subject><subject>Creep rate</subject><subject>Creep tests</subject><subject>Cross slip</subject><subject>Dislocation network</subject><subject>Dislocations</subject><subject>Electric power plants</subject><subject>Electron microscopy</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Nuclear electric power generation</subject><subject>Nuclear engineering</subject><subject>Nuclear power plants</subject><subject>Nuclear safety</subject><subject>Solute hydrogen</subject><subject>Straight dislocation</subject><subject>Transmission electron microscopy</subject><subject>Zircaloy-4</subject><subject>Zircaloys (trademark)</subject><subject>Zirconium alloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz61J06QJiCCLX7DgZb14CWk6cVO2zZp0hf57s6xnTzOH93lneBC6oaSkhIq7vhwSmLLKe0mrkvDmBC2obFhRKyZO0YKoihacKHaOLlLqCSG0JnyBHtbRjMlPPow4OGwjwA4PYDdm9GnA7YxT2O4nwJu5i-ELRuxH_OmjNdswF_UVOnNmm-D6b16ij-en9fK1WL2_vC0fV4Vlqp4K0UkuFGeUmUoIDkSA7JQwTnAqOTO8tZ1oiaOS5aizRHaGuqaRxBrpeMsu0e2xdxfD9x7SpPuwj2M-qamqWcWZalhOVceUjSGlCE7voh9MnDUl-uBJ9_rgSR88aVrp7ClD90cI8v8_HqJO1sNoofMR7KS74P_DfwHg-XAf</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Matsunaga, Tetsuya</creator><creator>Hongo, Hiromichi</creator><creator>Tabuchi, Masaaki</creator><creator>Satoh, Yuhki</creator><creator>Abe, Hiroaki</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170127</creationdate><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><author>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Creep</topic><topic>Creep rate</topic><topic>Creep tests</topic><topic>Cross slip</topic><topic>Dislocation network</topic><topic>Dislocations</topic><topic>Electric power plants</topic><topic>Electron microscopy</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Nuclear electric power generation</topic><topic>Nuclear engineering</topic><topic>Nuclear power plants</topic><topic>Nuclear safety</topic><topic>Solute hydrogen</topic><topic>Straight dislocation</topic><topic>Transmission electron microscopy</topic><topic>Zircaloy-4</topic><topic>Zircaloys (trademark)</topic><topic>Zirconium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsunaga, Tetsuya</creatorcontrib><creatorcontrib>Hongo, Hiromichi</creatorcontrib><creatorcontrib>Tabuchi, Masaaki</creatorcontrib><creatorcontrib>Satoh, Yuhki</creatorcontrib><creatorcontrib>Abe, Hiroaki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsunaga, Tetsuya</au><au>Hongo, Hiromichi</au><au>Tabuchi, Masaaki</au><au>Satoh, Yuhki</au><au>Abe, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition of creep mechanism by solute hydrogen in Zircaloy-4</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-01-27</date><risdate>2017</risdate><volume>684</volume><spage>191</spage><epage>195</epage><pages>191-195</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.12.057</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_1943253973 |
source | Elsevier ScienceDirect Journals |
subjects | Creep Creep rate Creep tests Cross slip Dislocation network Dislocations Electric power plants Electron microscopy Hydrogen Hydrogen storage Nuclear electric power generation Nuclear engineering Nuclear power plants Nuclear safety Solute hydrogen Straight dislocation Transmission electron microscopy Zircaloy-4 Zircaloys (trademark) Zirconium alloys |
title | Transition of creep mechanism by solute hydrogen in Zircaloy-4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20of%20creep%20mechanism%20by%20solute%20hydrogen%20in%20Zircaloy-4&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Matsunaga,%20Tetsuya&rft.date=2017-01-27&rft.volume=684&rft.spage=191&rft.epage=195&rft.pages=191-195&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.12.057&rft_dat=%3Cproquest_cross%3E1943253973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943253973&rft_id=info:pmid/&rft_els_id=S0921509316315465&rfr_iscdi=true |