Transition of creep mechanism by solute hydrogen in Zircaloy-4

The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195
Hauptverfasser: Matsunaga, Tetsuya, Hongo, Hiromichi, Tabuchi, Masaaki, Satoh, Yuhki, Abe, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue
container_start_page 191
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 684
creator Matsunaga, Tetsuya
Hongo, Hiromichi
Tabuchi, Masaaki
Satoh, Yuhki
Abe, Hiroaki
description The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.
doi_str_mv 10.1016/j.msea.2016.12.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1943253973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316315465</els_id><sourcerecordid>1943253973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz61J06QJiCCLX7DgZb14CWk6cVO2zZp0hf57s6xnTzOH93lneBC6oaSkhIq7vhwSmLLKe0mrkvDmBC2obFhRKyZO0YKoihacKHaOLlLqCSG0JnyBHtbRjMlPPow4OGwjwA4PYDdm9GnA7YxT2O4nwJu5i-ELRuxH_OmjNdswF_UVOnNmm-D6b16ij-en9fK1WL2_vC0fV4Vlqp4K0UkuFGeUmUoIDkSA7JQwTnAqOTO8tZ1oiaOS5aizRHaGuqaRxBrpeMsu0e2xdxfD9x7SpPuwj2M-qamqWcWZalhOVceUjSGlCE7voh9MnDUl-uBJ9_rgSR88aVrp7ClD90cI8v8_HqJO1sNoofMR7KS74P_DfwHg-XAf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943253973</pqid></control><display><type>article</type><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><source>Elsevier ScienceDirect Journals</source><creator>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</creator><creatorcontrib>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</creatorcontrib><description>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.12.057</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Creep ; Creep rate ; Creep tests ; Cross slip ; Dislocation network ; Dislocations ; Electric power plants ; Electron microscopy ; Hydrogen ; Hydrogen storage ; Nuclear electric power generation ; Nuclear engineering ; Nuclear power plants ; Nuclear safety ; Solute hydrogen ; Straight dislocation ; Transmission electron microscopy ; Zircaloy-4 ; Zircaloys (trademark) ; Zirconium alloys</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 27, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</citedby><cites>FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.12.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Matsunaga, Tetsuya</creatorcontrib><creatorcontrib>Hongo, Hiromichi</creatorcontrib><creatorcontrib>Tabuchi, Masaaki</creatorcontrib><creatorcontrib>Satoh, Yuhki</creatorcontrib><creatorcontrib>Abe, Hiroaki</creatorcontrib><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</description><subject>Creep</subject><subject>Creep rate</subject><subject>Creep tests</subject><subject>Cross slip</subject><subject>Dislocation network</subject><subject>Dislocations</subject><subject>Electric power plants</subject><subject>Electron microscopy</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Nuclear electric power generation</subject><subject>Nuclear engineering</subject><subject>Nuclear power plants</subject><subject>Nuclear safety</subject><subject>Solute hydrogen</subject><subject>Straight dislocation</subject><subject>Transmission electron microscopy</subject><subject>Zircaloy-4</subject><subject>Zircaloys (trademark)</subject><subject>Zirconium alloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz61J06QJiCCLX7DgZb14CWk6cVO2zZp0hf57s6xnTzOH93lneBC6oaSkhIq7vhwSmLLKe0mrkvDmBC2obFhRKyZO0YKoihacKHaOLlLqCSG0JnyBHtbRjMlPPow4OGwjwA4PYDdm9GnA7YxT2O4nwJu5i-ELRuxH_OmjNdswF_UVOnNmm-D6b16ij-en9fK1WL2_vC0fV4Vlqp4K0UkuFGeUmUoIDkSA7JQwTnAqOTO8tZ1oiaOS5aizRHaGuqaRxBrpeMsu0e2xdxfD9x7SpPuwj2M-qamqWcWZalhOVceUjSGlCE7voh9MnDUl-uBJ9_rgSR88aVrp7ClD90cI8v8_HqJO1sNoofMR7KS74P_DfwHg-XAf</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Matsunaga, Tetsuya</creator><creator>Hongo, Hiromichi</creator><creator>Tabuchi, Masaaki</creator><creator>Satoh, Yuhki</creator><creator>Abe, Hiroaki</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170127</creationdate><title>Transition of creep mechanism by solute hydrogen in Zircaloy-4</title><author>Matsunaga, Tetsuya ; Hongo, Hiromichi ; Tabuchi, Masaaki ; Satoh, Yuhki ; Abe, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-6d85695313a2665e06e8d96af651853a5bcd6b0f1836d8fc08da1f7780ca8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Creep</topic><topic>Creep rate</topic><topic>Creep tests</topic><topic>Cross slip</topic><topic>Dislocation network</topic><topic>Dislocations</topic><topic>Electric power plants</topic><topic>Electron microscopy</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Nuclear electric power generation</topic><topic>Nuclear engineering</topic><topic>Nuclear power plants</topic><topic>Nuclear safety</topic><topic>Solute hydrogen</topic><topic>Straight dislocation</topic><topic>Transmission electron microscopy</topic><topic>Zircaloy-4</topic><topic>Zircaloys (trademark)</topic><topic>Zirconium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsunaga, Tetsuya</creatorcontrib><creatorcontrib>Hongo, Hiromichi</creatorcontrib><creatorcontrib>Tabuchi, Masaaki</creatorcontrib><creatorcontrib>Satoh, Yuhki</creatorcontrib><creatorcontrib>Abe, Hiroaki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsunaga, Tetsuya</au><au>Hongo, Hiromichi</au><au>Tabuchi, Masaaki</au><au>Satoh, Yuhki</au><au>Abe, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition of creep mechanism by solute hydrogen in Zircaloy-4</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-01-27</date><risdate>2017</risdate><volume>684</volume><spage>191</spage><epage>195</epage><pages>191-195</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effect of solute hydrogen up to 200ppm on the creep mechanism of Zircaloy-4 was discussed to ascertain the safety of nuclear power plants. Creep tests performed at 673K and revealed that the addition of solute hydrogen decreased the creep rate in intermediate stress regions. According to the followed transmission electron microscopy, the phenomenon reflected the change of rate-controlling mechanisms without or with solute hydrogen: cross-slip in a non-hydrogenated sample with H=10ppm; solute-atmosphere dragging process in hydrogenated samples with H=100 and 200ppm. Because cross-slip works as the annihilation process for the glide dislocations in Zircaloy-4, it is considered that the suppression of cross-slip by solute hydrogen leads to a decrease in the creep rate.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.12.057</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.684, p.191-195
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_1943253973
source Elsevier ScienceDirect Journals
subjects Creep
Creep rate
Creep tests
Cross slip
Dislocation network
Dislocations
Electric power plants
Electron microscopy
Hydrogen
Hydrogen storage
Nuclear electric power generation
Nuclear engineering
Nuclear power plants
Nuclear safety
Solute hydrogen
Straight dislocation
Transmission electron microscopy
Zircaloy-4
Zircaloys (trademark)
Zirconium alloys
title Transition of creep mechanism by solute hydrogen in Zircaloy-4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20of%20creep%20mechanism%20by%20solute%20hydrogen%20in%20Zircaloy-4&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Matsunaga,%20Tetsuya&rft.date=2017-01-27&rft.volume=684&rft.spage=191&rft.epage=195&rft.pages=191-195&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.12.057&rft_dat=%3Cproquest_cross%3E1943253973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943253973&rft_id=info:pmid/&rft_els_id=S0921509316315465&rfr_iscdi=true