Hybrid scheme for Brownian semistationary processes

We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance and stochastics 2017-10, Vol.21 (4), p.931-965
Hauptverfasser: Bennedsen, Mikkel, Lunde, Asger, Pakkanen, Mikko S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 4
container_start_page 931
container_title Finance and stochastics
container_volume 21
creator Bennedsen, Mikkel
Lunde, Asger
Pakkanen, Mikko S.
description We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to approximate the kernel function by a power function near zero and by a step function elsewhere. The resulting approximation of the process is a combination of Wiener integrals of the power function and a Riemann sum, which is why we call this method a hybrid scheme. Our main theoretical result describes the asymptotics of the mean square error of the hybrid scheme, and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. (Quant. Finance 16:887–904, 2016 ), respectively.
doi_str_mv 10.1007/s00780-017-0335-5
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1943036197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943036197</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-eca9343c696325adfb76f495a19dd19bb0e08537ad651314a0de9fde3b2a09843</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqHwA9giMRvufHaSG6ECilSJBWbLiR1IRZNgp0L996QqA8u75dO9p0-Ia4RbBCjv0hwVSMBSApGR5kRkqElJRKVORQasWSqu9Lm4SGkDAMqAyQSt9nXsfJ6az7ANeTvE_CEOP33n-jyFbZcmN3VD7-I-H-PQhJRCuhRnrftK4ervLsT70-PbciXXr88vy_u1HLHiSYbGMWlqCi5IGefbuixazcYhe49c1xCgMlQ6Xxgk1A584NYHqpWDeSktxM3x79z8vQtpspthF_u50iJrAiqQy5lSRyqNses_QvxHgT3IsUc5dpZjD3KsoV-lL1b7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943036197</pqid></control><display><type>article</type><title>Hybrid scheme for Brownian semistationary processes</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bennedsen, Mikkel ; Lunde, Asger ; Pakkanen, Mikko S.</creator><creatorcontrib>Bennedsen, Mikkel ; Lunde, Asger ; Pakkanen, Mikko S.</creatorcontrib><description>We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to approximate the kernel function by a power function near zero and by a step function elsewhere. The resulting approximation of the process is a combination of Wiener integrals of the power function and a Riemann sum, which is why we call this method a hybrid scheme. Our main theoretical result describes the asymptotics of the mean square error of the hybrid scheme, and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. (Quant. Finance 16:887–904, 2016 ), respectively.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-017-0335-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer simulation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Integrals ; Kernel functions ; Management ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Power ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Simulation ; Statistics for Business ; Step functions ; Turbulence models</subject><ispartof>Finance and stochastics, 2017-10, Vol.21 (4), p.931-965</ispartof><rights>The Author(s) 2017</rights><rights>Finance and Stochastics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p189t-eca9343c696325adfb76f495a19dd19bb0e08537ad651314a0de9fde3b2a09843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-017-0335-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-017-0335-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bennedsen, Mikkel</creatorcontrib><creatorcontrib>Lunde, Asger</creatorcontrib><creatorcontrib>Pakkanen, Mikko S.</creatorcontrib><title>Hybrid scheme for Brownian semistationary processes</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to approximate the kernel function by a power function near zero and by a step function elsewhere. The resulting approximation of the process is a combination of Wiener integrals of the power function and a Riemann sum, which is why we call this method a hybrid scheme. Our main theoretical result describes the asymptotics of the mean square error of the hybrid scheme, and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. (Quant. Finance 16:887–904, 2016 ), respectively.</description><subject>Computer simulation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Integrals</subject><subject>Kernel functions</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Power</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Simulation</subject><subject>Statistics for Business</subject><subject>Step functions</subject><subject>Turbulence models</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkDFPwzAQhS0EEqHwA9giMRvufHaSG6ECilSJBWbLiR1IRZNgp0L996QqA8u75dO9p0-Ia4RbBCjv0hwVSMBSApGR5kRkqElJRKVORQasWSqu9Lm4SGkDAMqAyQSt9nXsfJ6az7ANeTvE_CEOP33n-jyFbZcmN3VD7-I-H-PQhJRCuhRnrftK4ervLsT70-PbciXXr88vy_u1HLHiSYbGMWlqCi5IGefbuixazcYhe49c1xCgMlQ6Xxgk1A584NYHqpWDeSktxM3x79z8vQtpspthF_u50iJrAiqQy5lSRyqNses_QvxHgT3IsUc5dpZjD3KsoV-lL1b7</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Bennedsen, Mikkel</creator><creator>Lunde, Asger</creator><creator>Pakkanen, Mikko S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>Hybrid scheme for Brownian semistationary processes</title><author>Bennedsen, Mikkel ; Lunde, Asger ; Pakkanen, Mikko S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-eca9343c696325adfb76f495a19dd19bb0e08537ad651314a0de9fde3b2a09843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Integrals</topic><topic>Kernel functions</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Power</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Simulation</topic><topic>Statistics for Business</topic><topic>Step functions</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennedsen, Mikkel</creatorcontrib><creatorcontrib>Lunde, Asger</creatorcontrib><creatorcontrib>Pakkanen, Mikko S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennedsen, Mikkel</au><au>Lunde, Asger</au><au>Pakkanen, Mikko S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid scheme for Brownian semistationary processes</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>931</spage><epage>965</epage><pages>931-965</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to approximate the kernel function by a power function near zero and by a step function elsewhere. The resulting approximation of the process is a combination of Wiener integrals of the power function and a Riemann sum, which is why we call this method a hybrid scheme. Our main theoretical result describes the asymptotics of the mean square error of the hybrid scheme, and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. (Quant. Finance 16:887–904, 2016 ), respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00780-017-0335-5</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0949-2984
ispartof Finance and stochastics, 2017-10, Vol.21 (4), p.931-965
issn 0949-2984
1432-1122
language eng
recordid cdi_proquest_journals_1943036197
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Computer simulation
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Integrals
Kernel functions
Management
Mathematical models
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Power
Probability Theory and Stochastic Processes
Quantitative Finance
Simulation
Statistics for Business
Step functions
Turbulence models
title Hybrid scheme for Brownian semistationary processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20scheme%20for%20Brownian%20semistationary%20processes&rft.jtitle=Finance%20and%20stochastics&rft.au=Bennedsen,%20Mikkel&rft.date=2017-10-01&rft.volume=21&rft.issue=4&rft.spage=931&rft.epage=965&rft.pages=931-965&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-017-0335-5&rft_dat=%3Cproquest_sprin%3E1943036197%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943036197&rft_id=info:pmid/&rfr_iscdi=true