Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea

Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2017-03, Vol.18 (3), p.973-993
Hauptverfasser: Stucky de Quay, G., Roberts, G. G., Watson, J. S., Jackson, C. A.‐L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 3
container_start_page 973
container_title Geochemistry, geophysics, geosystems : G3
container_volume 18
creator Stucky de Quay, G.
Roberts, G. G.
Watson, J. S.
Jackson, C. A.‐L.
description Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene‐Eocene Icelandic plume. Well data and a three‐dimensional seismic survey are used to reconstruct a 58–55 Ma landscape now buried ∼1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo‐rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ∼350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in ∼150 km/Ma. Key Points Sedimentary basins in the North Atlantic Ocean contain information about Paleogene vertical motions A buried terrestrial landscape in the Bressay region was uplifted in three stages between 58 and 55 Ma Rapid uplift and subsidence is best explained by transient asthenospheric thermal anomalies
doi_str_mv 10.1002/2016GC006769
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1942813214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942813214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3313-3c1298490705fdcb61e57cef44aa940c6cb854ab250e1dee561ff101bccfe6073</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqWw8QMsMRf8-isJG4pKQKpgAObIcd6oqRIn2A6o_55UZeh0N9xzJx0ht8DugTH-wBnoImdMJzo7IwtQXK0448n5ib8kVyHsGAOpVLog1auz7diii7Q3LnZIx27qkeLP0E2xHdwjzQcXojeti4E2fuipmZED0BlXB2tGDLSafIs1rdChiVsat0jfBj-7DzTX5KIxXcCbf12Sr-f1Z_6y2rwXr_nTZmWEALESFniWyowlTDW1rTSgSiw2UhqTSWa1rVIlTcUVQ6gRlYamAQaVtQ1qlogluTv2jn74njDEcjdM3s2TJWSSpyA4yDkljqnftsN9Ofq2N35fAisPF5anF5ZFUaw5cC3EHwKPZlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942813214</pqid></control><display><type>article</type><title>Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Stucky de Quay, G. ; Roberts, G. G. ; Watson, J. S. ; Jackson, C. A.‐L.</creator><creatorcontrib>Stucky de Quay, G. ; Roberts, G. G. ; Watson, J. S. ; Jackson, C. A.‐L.</creatorcontrib><description>Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene‐Eocene Icelandic plume. Well data and a three‐dimensional seismic survey are used to reconstruct a 58–55 Ma landscape now buried ∼1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo‐rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ∼350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in &lt;3 Ma and was rapidly drowned. This uplift history is similar to that of a slightly older buried landscape in the Faeroe‐Shetland basin ∼400 km to the west. These records of vertical motion are consistent with pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations, we estimate that the maximum thermal anomaly beneath Bressay was 50–100°C. Our observations suggest that a thermal anomaly departed the Icelandic plume around 57.4 ± 2.2 Ma at the latest and travelled with a velocity &gt;∼150 km/Ma. Key Points Sedimentary basins in the North Atlantic Ocean contain information about Paleogene vertical motions A buried terrestrial landscape in the Bressay region was uplifted in three stages between 58 and 55 Ma Rapid uplift and subsidence is best explained by transient asthenospheric thermal anomalies</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/2016GC006769</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anomalies ; Asthenosphere ; Beach ridges ; Cysts ; Drainage network ; Drainage patterns ; Eocene ; Evolution ; Geochemistry ; History ; Iceland ; landscapes ; Magma ; mantle ; Mantle convection ; Mantle plumes ; Ocean floor ; Palaeocene ; Paleocene ; Paleogene ; Profiles ; Rheology ; Ridges ; Rivers ; Sedimentary basins ; Seismic surveys ; Stratigraphy ; subsidence ; Surveying ; uplift ; Velocity ; Vertical motion ; Well data</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2017-03, Vol.18 (3), p.973-993</ispartof><rights>2017. The Author.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3313-3c1298490705fdcb61e57cef44aa940c6cb854ab250e1dee561ff101bccfe6073</citedby><orcidid>0000-0002-8598-543X ; 0000-0002-8592-9032 ; 0000-0002-6487-8117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GC006769$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GC006769$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,11571,27933,27934,45583,45584,46061,46485</link.rule.ids></links><search><creatorcontrib>Stucky de Quay, G.</creatorcontrib><creatorcontrib>Roberts, G. G.</creatorcontrib><creatorcontrib>Watson, J. S.</creatorcontrib><creatorcontrib>Jackson, C. A.‐L.</creatorcontrib><title>Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea</title><title>Geochemistry, geophysics, geosystems : G3</title><description>Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene‐Eocene Icelandic plume. Well data and a three‐dimensional seismic survey are used to reconstruct a 58–55 Ma landscape now buried ∼1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo‐rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ∼350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in &lt;3 Ma and was rapidly drowned. This uplift history is similar to that of a slightly older buried landscape in the Faeroe‐Shetland basin ∼400 km to the west. These records of vertical motion are consistent with pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations, we estimate that the maximum thermal anomaly beneath Bressay was 50–100°C. Our observations suggest that a thermal anomaly departed the Icelandic plume around 57.4 ± 2.2 Ma at the latest and travelled with a velocity &gt;∼150 km/Ma. Key Points Sedimentary basins in the North Atlantic Ocean contain information about Paleogene vertical motions A buried terrestrial landscape in the Bressay region was uplifted in three stages between 58 and 55 Ma Rapid uplift and subsidence is best explained by transient asthenospheric thermal anomalies</description><subject>Anomalies</subject><subject>Asthenosphere</subject><subject>Beach ridges</subject><subject>Cysts</subject><subject>Drainage network</subject><subject>Drainage patterns</subject><subject>Eocene</subject><subject>Evolution</subject><subject>Geochemistry</subject><subject>History</subject><subject>Iceland</subject><subject>landscapes</subject><subject>Magma</subject><subject>mantle</subject><subject>Mantle convection</subject><subject>Mantle plumes</subject><subject>Ocean floor</subject><subject>Palaeocene</subject><subject>Paleocene</subject><subject>Paleogene</subject><subject>Profiles</subject><subject>Rheology</subject><subject>Ridges</subject><subject>Rivers</subject><subject>Sedimentary basins</subject><subject>Seismic surveys</subject><subject>Stratigraphy</subject><subject>subsidence</subject><subject>Surveying</subject><subject>uplift</subject><subject>Velocity</subject><subject>Vertical motion</subject><subject>Well data</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkD1PwzAYhC0EEqWw8QMsMRf8-isJG4pKQKpgAObIcd6oqRIn2A6o_55UZeh0N9xzJx0ht8DugTH-wBnoImdMJzo7IwtQXK0448n5ib8kVyHsGAOpVLog1auz7diii7Q3LnZIx27qkeLP0E2xHdwjzQcXojeti4E2fuipmZED0BlXB2tGDLSafIs1rdChiVsat0jfBj-7DzTX5KIxXcCbf12Sr-f1Z_6y2rwXr_nTZmWEALESFniWyowlTDW1rTSgSiw2UhqTSWa1rVIlTcUVQ6gRlYamAQaVtQ1qlogluTv2jn74njDEcjdM3s2TJWSSpyA4yDkljqnftsN9Ofq2N35fAisPF5anF5ZFUaw5cC3EHwKPZlM</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Stucky de Quay, G.</creator><creator>Roberts, G. G.</creator><creator>Watson, J. S.</creator><creator>Jackson, C. A.‐L.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-8598-543X</orcidid><orcidid>https://orcid.org/0000-0002-8592-9032</orcidid><orcidid>https://orcid.org/0000-0002-6487-8117</orcidid></search><sort><creationdate>201703</creationdate><title>Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea</title><author>Stucky de Quay, G. ; Roberts, G. G. ; Watson, J. S. ; Jackson, C. A.‐L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3313-3c1298490705fdcb61e57cef44aa940c6cb854ab250e1dee561ff101bccfe6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Asthenosphere</topic><topic>Beach ridges</topic><topic>Cysts</topic><topic>Drainage network</topic><topic>Drainage patterns</topic><topic>Eocene</topic><topic>Evolution</topic><topic>Geochemistry</topic><topic>History</topic><topic>Iceland</topic><topic>landscapes</topic><topic>Magma</topic><topic>mantle</topic><topic>Mantle convection</topic><topic>Mantle plumes</topic><topic>Ocean floor</topic><topic>Palaeocene</topic><topic>Paleocene</topic><topic>Paleogene</topic><topic>Profiles</topic><topic>Rheology</topic><topic>Ridges</topic><topic>Rivers</topic><topic>Sedimentary basins</topic><topic>Seismic surveys</topic><topic>Stratigraphy</topic><topic>subsidence</topic><topic>Surveying</topic><topic>uplift</topic><topic>Velocity</topic><topic>Vertical motion</topic><topic>Well data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stucky de Quay, G.</creatorcontrib><creatorcontrib>Roberts, G. G.</creatorcontrib><creatorcontrib>Watson, J. S.</creatorcontrib><creatorcontrib>Jackson, C. A.‐L.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stucky de Quay, G.</au><au>Roberts, G. G.</au><au>Watson, J. S.</au><au>Jackson, C. A.‐L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2017-03</date><risdate>2017</risdate><volume>18</volume><issue>3</issue><spage>973</spage><epage>993</epage><pages>973-993</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene‐Eocene Icelandic plume. Well data and a three‐dimensional seismic survey are used to reconstruct a 58–55 Ma landscape now buried ∼1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo‐rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ∼350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in &lt;3 Ma and was rapidly drowned. This uplift history is similar to that of a slightly older buried landscape in the Faeroe‐Shetland basin ∼400 km to the west. These records of vertical motion are consistent with pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations, we estimate that the maximum thermal anomaly beneath Bressay was 50–100°C. Our observations suggest that a thermal anomaly departed the Icelandic plume around 57.4 ± 2.2 Ma at the latest and travelled with a velocity &gt;∼150 km/Ma. Key Points Sedimentary basins in the North Atlantic Ocean contain information about Paleogene vertical motions A buried terrestrial landscape in the Bressay region was uplifted in three stages between 58 and 55 Ma Rapid uplift and subsidence is best explained by transient asthenospheric thermal anomalies</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GC006769</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8598-543X</orcidid><orcidid>https://orcid.org/0000-0002-8592-9032</orcidid><orcidid>https://orcid.org/0000-0002-6487-8117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2017-03, Vol.18 (3), p.973-993
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_journals_1942813214
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Anomalies
Asthenosphere
Beach ridges
Cysts
Drainage network
Drainage patterns
Eocene
Evolution
Geochemistry
History
Iceland
landscapes
Magma
mantle
Mantle convection
Mantle plumes
Ocean floor
Palaeocene
Paleocene
Paleogene
Profiles
Rheology
Ridges
Rivers
Sedimentary basins
Seismic surveys
Stratigraphy
subsidence
Surveying
uplift
Velocity
Vertical motion
Well data
title Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T19%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incipient%20mantle%20plume%20evolution:%20Constraints%20from%20ancient%20landscapes%20buried%20beneath%20the%20North%20Sea&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Stucky%20de%20Quay,%20G.&rft.date=2017-03&rft.volume=18&rft.issue=3&rft.spage=973&rft.epage=993&rft.pages=973-993&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/2016GC006769&rft_dat=%3Cproquest_wiley%3E1942813214%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942813214&rft_id=info:pmid/&rfr_iscdi=true